scholarly journals A Converse to a Combinatorial Limit Theorem

1972 ◽  
Vol 43 (6) ◽  
pp. 2053-2057 ◽  
Author(s):  
J. Robinson
Keyword(s):  
Author(s):  
Amos Golan

In this chapter I provide additional rationalization for using the info-metrics framework. This time the justifications are in terms of the statistical, mathematical, and information-theoretic properties of the formalism. Specifically, in this chapter I discuss optimality, statistical and computational efficiency, sufficiency, the concentration theorem, the conditional limit theorem, and the concept of information compression. These properties, together with the other properties and measures developed in earlier chapters, provide logical, mathematical, and statistical justifications for employing the info-metrics framework.


2011 ◽  
Vol 48 (02) ◽  
pp. 366-388 ◽  
Author(s):  
Eckhard Schlemm

We consider the first passage percolation problem on the random graph with vertex set N x {0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edge weights. We provide a central limit theorem for the first passage times l n between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of l n / n as n → ∞. We use generating function techniques to compute the n-step transition kernels of a closely related Markov chain which can be used to explicitly calculate the asymptotic variance in the central limit theorem.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


Sign in / Sign up

Export Citation Format

Share Document