scholarly journals Bootstrapping the Maximum Likelihood Estimator in High-Dimensional Log-Linear Models

1989 ◽  
Vol 17 (3) ◽  
pp. 1198-1216 ◽  
Author(s):  
Wilhelm Sauermann
2013 ◽  
Vol 55 (3) ◽  
pp. 643-652
Author(s):  
Gauss M. Cordeiro ◽  
Denise A. Botter ◽  
Alexsandro B. Cavalcanti ◽  
Lúcia P. Barroso

Biometrika ◽  
2020 ◽  
Author(s):  
Ioannis Kosmidis ◽  
David Firth

Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator, and models with other commonly used link functions, such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields.


2015 ◽  
Vol 25 (4) ◽  
pp. 895-913 ◽  
Author(s):  
Rasa Karbauskaitė ◽  
Gintautas Dzemyda

AbstractOne of the problems in the analysis of the set of images of a moving object is to evaluate the degree of freedom of motion and the angle of rotation. Here the intrinsic dimensionality of multidimensional data, characterizing the set of images, can be used. Usually, the image may be represented by a high-dimensional point whose dimensionality depends on the number of pixels in the image. The knowledge of the intrinsic dimensionality of a data set is very useful information in exploratory data analysis, because it is possible to reduce the dimensionality of the data without losing much information. In this paper, the maximum likelihood estimator (MLE) of the intrinsic dimensionality is explored experimentally. In contrast to the previous works, the radius of a hypersphere, which covers neighbours of the analysed points, is fixed instead of the number of the nearest neighbours in the MLE. A way of choosing the radius in this method is proposed. We explore which metric—Euclidean or geodesic—must be evaluated in the MLE algorithm in order to get the true estimate of the intrinsic dimensionality. The MLE method is examined using a number of artificial and real (images) data sets.


Author(s):  
Hazim Mansour Gorgees ◽  
Bushra Abdualrasool Ali ◽  
Raghad Ibrahim Kathum

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.


Sign in / Sign up

Export Citation Format

Share Document