scholarly journals On the Novikov-Shiryaev Optimal Stopping Problems in Continuous Time

2005 ◽  
Vol 10 (0) ◽  
pp. 146-154 ◽  
Author(s):  
Andreas Kyprianou ◽  
Budhi Surya
2002 ◽  
Vol 34 (01) ◽  
pp. 141-157 ◽  
Author(s):  
Paul Dupuis ◽  
Hui Wang

We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed at t = 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only 𝒞 0 across the optimal boundary when stopping is allowed at t = 0 and 𝒞 2 otherwise, both contradicting the usual 𝒞 1 smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.


2016 ◽  
Vol 53 (1) ◽  
pp. 91-105
Author(s):  
Fabián Crocce ◽  
Ernesto Mordecki

Abstract We provide an algorithm to find the value and an optimal strategy of the Ten Thousand dice game solitaire variant in the framework of Markov control processes. Once an optimal critical threshold is found, the set of nonstopping states of the game becomes finite and the solution is found by a backwards algorithm that gives the values for each one of these states of the game. The algorithm is finite and exact. The strategy to find the critical threshold comes from the continuous pasting condition used in optimal stopping problems for continuous-time processes with jumps.


2002 ◽  
Vol 34 (1) ◽  
pp. 141-157 ◽  
Author(s):  
Paul Dupuis ◽  
Hui Wang

We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed att= 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only𝒞0across the optimal boundary when stopping is allowed att= 0 and𝒞2otherwise, both contradicting the usual𝒞1smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.


2021 ◽  
Vol 58 (4) ◽  
pp. 1043-1063
Author(s):  
Laurent Miclo ◽  
Stéphane Villeneuve

AbstractWe revisit the forward algorithm, developed by Irle, to characterize both the value function and the stopping set for a large class of optimal stopping problems on continuous-time Markov chains. Our objective is to renew interest in this constructive method by showing its usefulness in solving some constrained optimal stopping problems that have emerged recently.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (03) ◽  
pp. 818-836 ◽  
Author(s):  
Luis H. R. Alvarez ◽  
Pekka Matomäki

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.


Sign in / Sign up

Export Citation Format

Share Document