scholarly journals On the residue class distribution of the number of prime divisors of an integer

2011 ◽  
Vol 202 ◽  
pp. 15-22 ◽  
Author(s):  
Michael Coons ◽  
Sander R. Dahmen

AbstractLet Ω(n) denote the number of prime divisors of n counting multiplicity. One can show that for any positive integer m and all j = 0,1,…,m – 1, we havewith α = 1. Building on work of Kubota and Yoshida, we show that for m > 2 and any j = 0,1,…,m – 1, the error term is not o(xα) for any α < 1.

2011 ◽  
Vol 202 ◽  
pp. 15-22
Author(s):  
Michael Coons ◽  
Sander R. Dahmen

AbstractLet Ω(n) denote the number of prime divisors ofncounting multiplicity. One can show that for any positive integermand allj= 0,1,…,m– 1, we havewithα= 1. Building on work of Kubota and Yoshida, we show that form&gt; 2 and anyj= 0,1,…,m– 1, the error term is noto(xα) for anyα&lt; 1.


1985 ◽  
Vol 8 (2) ◽  
pp. 283-302 ◽  
Author(s):  
Claudia A. Spiro

This paper is concerned with estimating the number of positive integers up to some bound (which tends to infinity), such that they have a fixed number of prime divisors, and lie in a given arithmetic progression. We obtain estimates which are uniform in the number of prime divisors, and at the same time, in the modulus of the arithmetic progression. These estimates take the form of a fixed but arbitrary number of main terms, followed by an error term.


2019 ◽  
Vol 15 (07) ◽  
pp. 1463-1468
Author(s):  
Dominik Burek ◽  
Błażej Żmija

A composite positive integer [Formula: see text] has the Lehmer property if [Formula: see text] divides [Formula: see text] where [Formula: see text] is an Euler totient function. In this paper, we shall prove that if [Formula: see text] has the Lehmer property, then [Formula: see text], where [Formula: see text] is the number of prime divisors of [Formula: see text]. We apply this bound to repunit numbers and prove that there are at most finitely many numbers with the Lehmer property in the set [Formula: see text] where [Formula: see text] denotes the highest power of 2 that divides [Formula: see text], and [Formula: see text] is a fixed real number.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2005 ◽  
Vol 117 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Jörn Steuding ◽  
Annegret Weng

10.37236/2574 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Zachary Gates ◽  
Brian Goldman ◽  
C. Ryan Vinroot

Given a positive integer $n$, and partitions $\lambda$ and $\mu$ of $n$, let $K_{\lambda \mu}$ denote the Kostka number, which is the number of semistandard Young tableaux of shape $\lambda$ and weight $\mu$.  Let $J(\lambda)$ denote the number of $\mu$ such that $K_{\lambda \mu} = 1$.  By applying a result of Berenshtein and Zelevinskii, we obtain a formula for $J(\lambda)$ in terms of restricted partition functions, which is recursive in the number of distinct part sizes of $\lambda$.  We use this to classify all partitions $\lambda$ such that $J(\lambda) = 1$ and all $\lambda$ such that $J(\lambda) = 2$.  We then consider signed tableaux, where a semistandard signed tableau of shape $\lambda$ has entries from the ordered set $\{0 < \bar{1} < 1 < \bar{2} < 2 < \cdots \}$, and such that $i$ and $\bar{i}$ contribute equally to the weight.  For a weight $(w_0, \mu)$ with $\mu$ a partition, the signed Kostka number $K^{\pm}_{\lambda,(w_0, \mu)}$ is defined as the number of semistandard signed tableaux of shape $\lambda$ and weight $(w_0, \mu)$, and $J^{\pm}(\lambda)$ is then defined to be the number of weights $(w_0, \mu)$ such that $K^{\pm}_{\lambda, (w_0, \mu)} = 1$.  Using different methods than in the unsigned case, we find that the only nonzero value which $J^{\pm}(\lambda)$ can take is $1$, and we find all sequences of partitions with this property.  We conclude with an application of these results on signed tableaux to the character theory of finite unitary groups.


1988 ◽  
Vol 29 (1) ◽  
pp. 94-99 ◽  
Author(s):  
P.D.T.A Elliott ◽  
A Sárközy

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuqian Lin ◽  
Qin Yue ◽  
Yansheng Wu

Let Fq be a finite field with q elements and n a positive integer. In this paper, we use matrix method to give all primitive idempotents of irreducible cyclic codes of length n, whose prime divisors divide q-1.


Sign in / Sign up

Export Citation Format

Share Document