scholarly journals Differential operators on quantized flag manifolds at roots of unity, II

2014 ◽  
Vol 214 ◽  
pp. 1-52 ◽  
Author(s):  
Toshiyuki Tanisaki

AbstractWe formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twisted D-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.

2014 ◽  
Vol 214 ◽  
pp. 1-52
Author(s):  
Toshiyuki Tanisaki

AbstractWe formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twistedD-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.


2006 ◽  
Vol 183 ◽  
pp. 1-55 ◽  
Author(s):  
Roman Bezrukavnikov ◽  
Ivan Mirković ◽  
Dmitriy Rumynin

In [BMR] we observed that, on the level of derived categories, representations of the Lie algebra of a semisimple algebraic group over a field of finite characteristic with a given (generalized) regular central character can be identified with coherent sheaves on the formal neighborhood of the corresponding (generalized) Springer fiber. In the present paper we treat singular central characters.The basic step is the Beilinson-Bernstein localization of modules with a fixed (generalized) central character λ as sheaves on the partial flag variety corresponding to the singularity of λ. These sheaves are modules over a sheaf of algebras which is a version of twisted crystalline differential operators. We discuss translation functors and intertwining functors. The latter generate an action of the affine braid group on the derived category of modules with a regular (generalized) central character, which intertwines different localization functors. We also describe the standard duality on Lie algebra modules in terms of D-modules and coherent sheaves.


2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


1994 ◽  
Vol 37 (3) ◽  
pp. 477-482 ◽  
Author(s):  
T. J. Hodges ◽  
M. P. Holland

Let D be the factor of the enveloping algebra of a semisimple Lie algebra by its minimal primitive ideal with trival central character. We give a geometric description of the Chern character ch: K0(D)→HC0(D) and the state (of the maximal ideal m) s: K0(D)→K0(D/m) = ℤ in terms of the Euler characteristic χ:K0()→ℤ, where is the associated flag variety.


Sign in / Sign up

Export Citation Format

Share Document