scholarly journals Characterizations of regular local rings via syzygy modules of the residue field

2018 ◽  
Vol 10 (3) ◽  
pp. 327-337
Author(s):  
Dipankar Ghosh ◽  
Anjan Gupta ◽  
Tony J. Puthenpurakal
2018 ◽  
Vol 61 (03) ◽  
pp. 705-725
Author(s):  
DIPANKAR GHOSH ◽  
TONY J. PUTHENPURAKAL

AbstractLet R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950097
Author(s):  
Dipankar Ghosh

Let [Formula: see text] be a Cohen–Macaulay local ring. We prove that the [Formula: see text]th syzygy module of a maximal Cohen–Macaulay [Formula: see text]-module cannot have a semidualizing direct summand for every [Formula: see text]. In particular, it follows that [Formula: see text] is Gorenstein if and only if some syzygy of a canonical module of [Formula: see text] has a nonzero free direct summand. We also give a number of necessary and sufficient conditions for a Cohen–Macaulay local ring of minimal multiplicity to be regular or Gorenstein. These criteria are based on vanishing of certain Exts or Tors involving syzygy modules of the residue field.


Author(s):  
Yinghwa Wu

Throughout, (R, m) will denote a d-dimensional CohenMacaulay (CM for short) local ring having an infinite residue field and I an m-primary ideal in R. Recall that an ideal J I is said to be a reduction of I if Ir+1 = JIr for some r 0, and a reduction J of I is called a minimal reduction of I if J is generated by a system of parameters. The concepts of reduction and minimal reduction were first introduced by Northcott and Rees12. If J is a reduction of I, define the reduction number of I with respect to J, denoted by rj(I), to be min {r 0 Ir+1 = JIr}. The reduction number of I is defined as r(I) = min {rj(I)J is a minimal reduction of I}. The reduction number r(I) is said to be independent if r(I) = rj(I) for every minimal reduction J of I.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document