scholarly journals Univalence and Convexity Properties for Gaussian Hypergeometric Functions

2001 ◽  
Vol 31 (1) ◽  
pp. 327-353 ◽  
Author(s):  
S. Ponnusamy ◽  
M. Vuorinen
2021 ◽  
Vol 7 (4) ◽  
pp. 4974-4991
Author(s):  
Ye-Cong Han ◽  
◽  
Chuan-Yu Cai ◽  
Ti-Ren Huang ◽  

<abstract><p>In this paper, we mainly prove monotonicity and convexity properties of certain functions involving zero-balanced Gaussian hypergeometric function $ F(a, b; a+b; x) $. We generalize conclusions of elliptic integral to Gaussian hypergeometric function, and get some accurate inequalities about Gaussian hypergeometric function.</p></abstract>


2005 ◽  
Vol 74 (252) ◽  
pp. 1937-1953 ◽  
Author(s):  
W. Luh ◽  
J. Müller ◽  
S. Ponnusamy ◽  
P. Vasundhra

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Slavko Simić ◽  
Matti Vuorinen

For zero-balanced Gaussian hypergeometric functionsF(a,b;a+b;x),a,b>0, we determine maximal regions ofabplane where well-known Landen identities for the complete elliptic integral of the first kind turn on respective inequalities valid for eachx∈(0,1). Thereby an exhausting answer is given to the open problem from the work by Anderson et al., 1990.


Sign in / Sign up

Export Citation Format

Share Document