series expansions
Recently Published Documents


TOTAL DOCUMENTS

974
(FIVE YEARS 95)

H-INDEX

49
(FIVE YEARS 3)

Author(s):  
Matthieu Alfaro ◽  
Gwenaël Peltier

We consider a population structured by a space variable and a phenotypical trait, submitted to dispersion, mutations, growth and nonlocal competition. This population is facing an environmental gradient: to survive at location [Formula: see text], an individual must have a trait close to some optimal trait [Formula: see text]. Our main focus is to understand the effect of a nonlinear environmental gradient. We thus consider a nonlocal parabolic equation for the distribution of the population, with [Formula: see text], [Formula: see text]. We construct steady states solutions and, when [Formula: see text] is periodic, pulsating fronts. This requires the combination of rigorous perturbation techniques based on a careful application of the implicit function theorem in rather intricate function spaces. To deal with the phenotypic trait variable [Formula: see text] we take advantage of a Hilbert basis of [Formula: see text] made of eigenfunctions of an underlying Schrödinger operator, whereas to deal with the space variable [Formula: see text] we use the Fourier series expansions. Our mathematical analysis reveals, in particular, how both the steady states solutions and the fronts (speed and profile) are distorted by the nonlinear environmental gradient, which are important biological insights.


2021 ◽  
Author(s):  
Zi-kun Gao ◽  
Jing-guo Wang

Abstract The series solutions to the problem of spatial axisymmetric consolidation are deduced under non-homogeneous boundary conditions. Firstly, differentiable step function is introduced to construct the homogeneous operation function. Secondly, the operation function is used to superimpose the non-homogeneous boundaries to obtain homogeneous boundaries, non-homogeneous fundamental equation and new initial condition. Finally, the method of variables separation is used to construct the eigenfunction, and due to the mathematical justification of complete orthogonality of the eigenfunction, the series expansions of the fundamental equation and initial condition are carried out to obtain solutions for the seepage and consolidation in saturated clay with a borehole boundary. The correctness of the theoretical solutions are verified by the strict mathematical and mechanics derivation and the law of space-time variation in seepage flow.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
P. A. Robinson

The propagator, or Green function, of a class of neural activity fields and of haemodynamic waves is evaluated exactly. The results enable a number of related integrals to be evaluated, along with series expansions of key results in terms of Bessel functions of the second kind. Connections to other related equations are also noted.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 308
Author(s):  
Yogesh J. Bagul ◽  
Ramkrishna M. Dhaigude ◽  
Marko Kostić ◽  
Christophe Chesneau

Recent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form (1−αx2)eβx2 for the trigonometric sinc and cosine functions. Our main result for the sinc function is a double inequality holding on the interval (0, π), while our main result for the cosine function is a double inequality holding on the interval (0, π/2). Comparable sharp results for hyperbolic functions are also obtained. The proofs are based on series expansions, inequalities on the Bernoulli numbers, and the monotone form of the l’Hospital rule. Some comparable bounds of the literature are improved. Examples of application via integral techniques are given.


Author(s):  
Charlene Kalle ◽  
Marta Maggioni

In this paper, we employ a random dynamical systems approach to study generalized Lüroth series expansions of numbers in the unit interval. We prove that for each [Formula: see text] with [Formula: see text] Lebesgue almost all numbers in [Formula: see text] have uncountably many universal generalized Lüroth series expansions with digits less than or equal to [Formula: see text], so expansions in which each possible block of digits occurs. In particular this means that Lebesgue almost all [Formula: see text] have uncountably many universal generalized Lüroth series expansions using finitely many digits only. For [Formula: see text] we show that typically the speed of convergence to an irrational number [Formula: see text] of the corresponding sequence of Lüroth approximants is equal to that of the standard Lüroth approximants. For other rational values of [Formula: see text] we use stationary measures to study the typical speed of convergence of the approximants and the digit frequencies.


2021 ◽  
Author(s):  
Feng Qi

Abstract In the paper, by means of the Faa di Bruno formula, with the help of explicit formulas for special values of the Bell polynomials of the second kind with respect to a specific sequence, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes Maclaurin's series expansions for real powers of the inverse cosine (sine) function and the inverse hyperbolic cosine (sine) function. By applying different series expansions for the square of the inverse cosine function, the author not only finds infinite series representations of the circular constant Pi and its square, but also derives two combinatorial identities involving central binomial coefficients.


2021 ◽  
Author(s):  
Feng Qi

Abstract In the paper, by means of the Faa di Bruno formula, with the help of explicit formulas for special values of the Bell polynomials of the second kind with respect to a specific sequence, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes Maclaurin's series expansions for real powers of the inverse cosine function and the inverse hyperbolic cosine function. By applying different series expansions for the square of the inverse cosine function, the author not only finds infinite series representations of the circular constant Pi and its square, but also derives two combinatorial identities involving central binomial coefficients.


Sign in / Sign up

Export Citation Format

Share Document