scholarly journals A general comparison theorem for backward stochastic differential equations

2010 ◽  
Vol 42 (3) ◽  
pp. 878-898 ◽  
Author(s):  
Samuel N. Cohen ◽  
Robert J. Elliott ◽  
Charles E. M. Pearce

A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectations are also explored.

2010 ◽  
Vol 42 (03) ◽  
pp. 878-898 ◽  
Author(s):  
Samuel N. Cohen ◽  
Robert J. Elliott ◽  
Charles E. M. Pearce

A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectations are also explored.


Author(s):  
Hanwu Li ◽  
Yongsheng Song

Abstract In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condition is proposed to derive the uniqueness and existence of the solutions. The uniqueness can be proved by a priori estimates and the existence is obtained via a penalization method.


2012 ◽  
Vol 524-527 ◽  
pp. 3801-3804
Author(s):  
Shi Yu Li ◽  
Wu Jun Gao ◽  
Jin Hui Wang

ƒIn this paper, we study the one-dimensional backward stochastic equations driven by continuous local martingale. We establish a generalized the comparison theorem for any solutions where the coefficient is uniformly Lipschitz continuous in z and is equi-continuous in y.


Sign in / Sign up

Export Citation Format

Share Document