Tight and gap junctions in the intestinal tract of tunicates (Urochordata): a freeze-fracture study

1986 ◽  
Vol 84 (1) ◽  
pp. 1-17
Author(s):  
N.J. Lane ◽  
R. Dallai ◽  
P. Burighel ◽  
G.B. Martinucci

The intestinal tracts from seven different species of tunicates, some solitary, some colonial, were studied fine-structurally by freeze-fracture. These urochordates occupy an intermediate position phylogenetically between the vertebrates and the invertebrates. The various regions of their gut were isolated for examination and the junctional characteristics of each part investigated. All the species examined exhibited unequivocal vertebrate-like belts of tight-junctional networks at the luminal border of their intestinal cells. No septate junctions were observed. The tight junctions varied in the number of their component strands and the depth to which they extended basally, some becoming loose and fragmented towards that border. The junctions consisted of ridges or rows of intramembranous particles (IMPs) on the P face, with complementary, but offset, E face grooves into which IMPs sometimes fractured. Tracer studies show that punctate appositions, the thin-section correlate of these ridge/groove systems, are sites beyond which exogenous molecules do not penetrate. These junctions are therefore likely to represent permeability barriers as in the gut tract of higher chordates. Associated with these occluding zonular junctions are intermediate junctions, which exhibit no identifiable freeze-fracture profile, and macular gap junctions, characterized by a reduced intercellular cleft in thin section and by clustered arrays of P face particles in freeze-fractured replicas; these display complementary aggregates of E face pits. The diameters of these maculae are rarely very large, but in certain species (for example, Ciona), they are unusually small. In some tissues, notably those of Diplosoma and Botryllus, they are all of rather similar size, but very numerous. In yet others, such as Molgula, they are polygonal with angular outlines, as might be indicative of the uncoupled state. In many attributes, these various junctions are more similar to those found in the tissues of vertebrates, than to those in the invertebrates, which the adult zooid forms of these lowly chordates resemble anatomically.

1988 ◽  
Vol 46 (1) ◽  
pp. 6-9
Author(s):  
Claudio A. Ferraz de Carvalho ◽  
Ciro F. da Silva

A freeze-fracture analysis of the satellite cells of spinal ganglia of the chick embryo was performed in 8 successive stages of development, from the 5th incubation day to hatching. The characteristic laminar disposition of the cells were first observed on the 7th day. Tight junctions were found at the 20th incubation day. Small groups or irregular aggregates of particles, but not gap junctions, were described on the 7th and 8th days. Pinocytotic vesicles were pointed out in the different stages considered.


1973 ◽  
Vol 43 (3-4) ◽  
pp. 298-312 ◽  
Author(s):  
Ross G. Johnson ◽  
William S. Herman ◽  
Doris M. Preus

Author(s):  
T. M. Mukherjee ◽  
J. G. Swift

Thin section and freeze-fracture techniques have been used to examine the morphology of cell junctions in a variety of pleuro-pulmonary tumours with the aim of identifying features that may be of diagnostic importance or of significance in the development of the tumour. Freeze-fracture preparations are particularly useful for the analysis of cell junctions, since extensive face views of the interior of the cell membrane are exposed. This enables precise characterisation of the type of junctions present, their extent and their inter-relationships.Freeze-fracture replicas can reveal the presence of junctions that would be difficult or impossible to detect in thin sections. For example, desmosomes are a well-known feature in thin sections of squamous cell carcinomas, but these tumours may also have focal tight junctions and gap junctions (Figs. 1,2). The tight and gap junctions can occur separately (Fig.l), or in combination (Fig. 2). Similarly, in a recent study of a case of “Ewing’s sarcoma”, replicas showed the presence of unusual, elaborate focal tight junctions, a feature never suspected from the routine thin section studies of this tumour.


Pathobiology ◽  
1980 ◽  
Vol 48 (6) ◽  
pp. 404-420 ◽  
Author(s):  
Horst Robenek ◽  
Rüdiger Meiss ◽  
Hermann Themann ◽  
Sabine Himmeh

1972 ◽  
Vol 53 (3) ◽  
pp. 758-776 ◽  
Author(s):  
Daniel S. Friend ◽  
Norton B. Gilula

The fine structure and distribution of tight (zonula occludens) and gap junctions in epithelia of the rat pancreas, liver, adrenal cortex, epididymis, and duodenum, and in smooth muscle were examined in paraformaldehyde-glutaraldehyde-fixed, tracer-permeated (K-pyroantimonate and lanthanum), and freeze-fractured tissue preparations. While many pentalaminar and septilaminar foci seen in thin-section and tracer preparations can be recognized as corresponding to well-characterized freeze-fracture images of tight and gap junction membrane modifications, many others cannot be unequivocally categorized—nor can all freeze-etched aggregates of membrane particles. Generally, epithelia of exocrine glands (pancreas and liver) have moderate-sized tight junctions and large gap junctions, with many of their gap junctions basal to the junctional complex. In contrast, the adrenal cortex, a ductless gland, may not have a tight junction but does possess large gap junctions. Mucosal epithelia (epididymis and intestine) have extensive tight junctions, but their gap junctions are not as well developed as those of glandular tissue. Smooth muscle contains numerous small gap junctions The incidence, size, and configuration of the junctions we observed correlate well with the known functions of the junctions and of the tissues where they are found.


1978 ◽  
Vol 79 (3) ◽  
pp. 774-787 ◽  
Author(s):  
N S McNutt

Choroid plexus and intestinal microvilli in thin sections have microfilaments in the cytoplasm adjacent to the membranes, and in replicas have broken strands of filaments in both cytoplasm and on E faces of plasm membranes. The microfilaments contain actin as indicated by their binding of heavy meromyosin (HMM). In sections of choroid plexus, the microfilaments are 7-8 nm in diameter and form a loose meshwork which lies parallel to the membrane and which is connected to the membranes both by short, connecting filaments (8 times 30 nm) and dense globules (approximately 15-20 nm). The filamentous strands seen in replicas are approximately 8 nm in diameter. Because they are similar in diameter and are connected to the membrane, these filamentous strands seen in replicas apparently represent the connecting structures, portions of the microfilaments, or both. The filamentous strands attached to the membrane are usually associated with the E face and appear to be pulled through the P half-membrane. In replicas of intestinal brush border microvilli, the connecting strands attaching core microfilaments to the membrane are readily visualized. In contrast, regions of attachment of core microfilaments to dense material at the tips of microvilli are associated with few particles on P faces and with few filamentous strands on the E faces of the membranes. Freeze-fracture replicas suggest a morphologically similar type of connecting strand attachment for microfilament-membrane binding in both choroid plexus and intestinal microvilli, despite the lack of a prominent core bundle of microfilaments in choroid plexus microvilli.


1987 ◽  
Vol 66 (8) ◽  
pp. 1303-1309 ◽  
Author(s):  
T. Inoue ◽  
H. Yamane ◽  
T. Yamamura ◽  
M. Shimono

Long-term repeated administration of isoproterenol (lPR) 2 mg/100 g bw, once daily for ten days, resulted in morphological changes in the intercellular junctions of rat submandibular glands, which were investigated by means of the freeze fracture technique. A significantly increased number of tight-junctional strands was present. These junctional strands extended much deeper toward the basal membrane than those in normal acinar cells. The basal frontier strands that branched from the networks of tight junctions were elongated and had either free-endings or terminal loops, which were more frequently observed in the IPR-treated acinar cells than in untreated acinar cells. Some of the strands of tight junctions were connected to small gap junctions. The diameters of gap junctions were not significantly different from those of control acinar cells. However, smooth areas devoid of particles were found intermingling with the usual packed particles in irregularly shaped small gap junctions. There was no significant difference between the desmosomes of IPR-treated and untreated acinar cells, in terms of either morphology or distribution. These changes in junctional morphology in the IPR-treated acinar cells resemble those seen in salivary glands during development, and in some experimental conditions including tumorous changes.


Sign in / Sign up

Export Citation Format

Share Document