Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form

1990 ◽  
Vol 96 (1) ◽  
pp. 121-129
Author(s):  
N.H. Waseem ◽  
D.P. Lane

The proliferating cell nuclear antigen, PCNA, has recently been identified as the polymerase delta accessory protein. PCNA is essential for cellular DNA synthesis and is also required for the in vitro replication of simian virus 40 (SV40) DNA where it acts to coordinate leading and lagging strand synthesis at the replication fork. The cDNA for rat PCNA was cloned into a series of bacterial expression vectors and the resulting protein used to immunize mice. Eleven new monoclonal antibodies to PCNA have been isolated and characterized. Some of the antibodies recognize epitopes conserved from man to fission yeast. Immunocytochemical analysis of primate epithelial cell lines showed that the antibodies recognized antigenically distinct forms of PCNA and that these forms were localized to different compartments of the nucleus. One antibody reacted exclusively with PCNA in the nucleolus. These results suggest that the PCNA protein may fulfil several separate roles in the cell nucleus associated with changes in its antigenic structure.

1993 ◽  
Vol 13 (5) ◽  
pp. 2882-2890 ◽  
Author(s):  
D Denis ◽  
P A Bullock

Studies of simian virus 40 (SV40) DNA replication in vitro have identified a small (approximately 30-nucleotide) RNA-DNA hybrid species termed primer-DNA. Initial experiments indicated that T antigen and the polymerase alpha-primase complex are required to form primer-DNA. Proliferating cell nuclear antigen, and presumably proliferating cell nuclear antigen-dependent polymerases, is not needed to form this species. Herein, we present an investigation of the stages at which primer-DNA functions during SV40 DNA replication in vitro. Hybridization studies indicate that primer-DNA is initially formed in the origin region and is subsequently synthesized in regions distal to the origin. At all time points, primer-DNA is synthesized from templates for lagging-strand DNA replication. These studies indicate that primer-DNA functions during both initiation and elongation stages of SV40 DNA synthesis. Results of additional experiments suggesting a precursor-product relationship between formation of primer-DNA and Okazaki fragments are presented.


1989 ◽  
Vol 9 (2) ◽  
pp. 609-619 ◽  
Author(s):  
T Tsurimoto ◽  
B Stillman

Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.


1993 ◽  
Vol 13 (5) ◽  
pp. 2882-2890
Author(s):  
D Denis ◽  
P A Bullock

Studies of simian virus 40 (SV40) DNA replication in vitro have identified a small (approximately 30-nucleotide) RNA-DNA hybrid species termed primer-DNA. Initial experiments indicated that T antigen and the polymerase alpha-primase complex are required to form primer-DNA. Proliferating cell nuclear antigen, and presumably proliferating cell nuclear antigen-dependent polymerases, is not needed to form this species. Herein, we present an investigation of the stages at which primer-DNA functions during SV40 DNA replication in vitro. Hybridization studies indicate that primer-DNA is initially formed in the origin region and is subsequently synthesized in regions distal to the origin. At all time points, primer-DNA is synthesized from templates for lagging-strand DNA replication. These studies indicate that primer-DNA functions during both initiation and elongation stages of SV40 DNA synthesis. Results of additional experiments suggesting a precursor-product relationship between formation of primer-DNA and Okazaki fragments are presented.


1989 ◽  
Vol 9 (2) ◽  
pp. 609-619
Author(s):  
T Tsurimoto ◽  
B Stillman

Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.


Nature ◽  
1987 ◽  
Vol 326 (6112) ◽  
pp. 471-475 ◽  
Author(s):  
Gregory Prelich ◽  
Matthew Kostura ◽  
Daniel R. Marshak ◽  
Michael B. Mathews ◽  
Bruce Stillman

1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


1994 ◽  
Vol 4 (8) ◽  
pp. 1588-1597
Author(s):  
R A Zager ◽  
S M Fuerstenberg ◽  
P H Baehr ◽  
D Myerson ◽  
B Torok-Storb

Xanthine oxidase (XO) activity and hydroxyl radical (.OH) formation are widely proposed mediators of renal reperfusion injury, potentially altering the severity of, and recovery from, postischemic acute renal failure. The goal of this study was to ascertain whether combination XO inhibitor (oxypurinol) and .OH scavenger (Na benzoate) therapy, given at the time of renal ischemia, alters the extent of: (1) tubular necrosis and filtration failure; (2) DNA fragmentation/apoptosis (assessed in situ by terminal deoxynucleotidyl transferase reactivity); (3) early tubular regenerative responses (proliferating cell nuclear antigen expression; (3H)thymidine incorporation); and (4) the rate and/or degree of functional and morphologic repair. The effects of XO inhibition, .OH scavengers, and "catalytic" iron (FeSO4) on human proximal tubular cell proliferation in vitro were also assessed with a newly established cell line (HK-2). Male Sprague-Dawley rats were subjected to 35 min of bilateral renal arterial occlusion with or without oxypurinol/benzoate therapy. These agents did not alter the extent of tubular necrosis or filtration failure, proliferating cell nuclear antigen expression or thymidine incorporation, or the rate/extent of renal functional/morphologic repair. DNA fragmentation did not precede tubular necrosis, and it was unaffected by antioxidant therapy. By 5 days postischemia, both treatment groups demonstrated regenerating epithelial fronds that protruded into the lumina. These structures contained terminal deoxynucleotidyl transferase-reactive, but morphologically intact, cells, suggesting the presence of apoptosis. Oxypurinol and .OH scavengers (benzoate; dimethylthiourea) suppressed in vitro tubular cell proliferation; conversely, catalytic Fe had a growth-stimulatory effect. These results suggest that: (1) XO inhibition/.OH scavenger therapy has no discernible net effect on postischemic acute renal failure; (2) DNA fragmentation does not precede tubular necrosis, suggesting that it is not a primary mediator of ischemic cell death; and (3) antioxidants can be antiproliferative for human tubular cells, possibly mitigating their potential beneficial effects.


1989 ◽  
Vol 9 (1) ◽  
pp. 57-66
Author(s):  
M Zuber ◽  
E M Tan ◽  
M Ryoji

Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase delta is necessary for plasmid replication in vivo. Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase alpha. Anti-DNA polymerase alpha alone inhibited plasmid replication by 63%. Thus, DNA polymerase alpha is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase alpha antibody blocked 73% of replication. We concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase delta. In addition, we obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymerase alpha, that the structure of DNA polymerase alpha holoenzyme for chromosome replication is significantly different from that for plasmid replication.


Sign in / Sign up

Export Citation Format

Share Document