antigen expression
Recently Published Documents


TOTAL DOCUMENTS

3422
(FIVE YEARS 329)

H-INDEX

107
(FIVE YEARS 9)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Lucky Frannata ◽  
Indrawarman Soeroharjo ◽  
Raden Danarto ◽  
Didik Setyo Heriyanto

Objective: This study aimed to compare PSMA expression in both prostate cancer and benign prostate disease. Material & Methods: PSMA antigen expression was examined using polymerase chain reaction (PCR), twenty samples from each prostate cancer and benign prostate group were examined at the Department of Pathology Anatomy, Sardjito General Hospital. The data was analyzed using version 21 of SPSS.  Results: The mean PSMA gene expression in benign groups was 13.49 [95% CI: 11.27 – 15.72] and the mean PSMA gene expression in the malignant group was: 25.14 [95% CI: 20.95-29.33], the p-value was <0.01. Using an independent T-test analysis, we found that the increase in PSMA gene expression in the prostate cancer group was statistically significant. Conclusion: The expression of the PSMA gene was correlated with prostate cancer. Increased PSMA gene expression in prostate tissue could be used as a biomarker to diagnose prostate cancer.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Elizabeth Monreal-Escalante ◽  
Abel Ramos-Vega ◽  
Carlos Angulo ◽  
Bernardo Bañuelos-Hernández

Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Anca Bobircă ◽  
Florin Bobircă ◽  
Ioan Ancuța ◽  
Anca Florescu ◽  
Mihai Bojincă ◽  
...  

Thrombocytopenia is defined as a platelet count below 150,000/mm3 for adults. There is still controversy about whether individuals with platelet counts of 100,000/mm3 to 150,000/mm3 should be classified as having genuine thrombocytopenia or borderline thrombocytopenia. Thrombocytopenia is considered mild when the platelet count is between 70,000 and 150,000/mm3 and severe if the count is less than 20,000/mm3. Thrombocytopenia in rheumatoid arthritis is a rare complication, with an incidence estimated between 3 and 10%. The main etiological aspects include drug-induced thrombocytopenia and immune thrombocytopenic purpura. The most common hematological abnormalities in SARS-CoV-2 infection are lymphopenia and thrombocytopenia. It has been observed that the severity of thrombocytopenia correlates with the severity of the infection, being a poor prognosis indicator and a risk factor for mortality. COVID-19 can stimulate the immune system to destroy platelets by increasing the production of autoantibodies and immune complexes. Autoimmunity induced by viral infections can be related to molecular mimicry, cryptic antigen expression and also spreading of the epitope. During the COVID-19 pandemic, it is of great importance to include the SARS-CoV-2 infection in differential diagnoses, due to the increased variability in forms of presentation of this pathology. In this review, our aim is to present one of the most recently discovered causes of thrombocytopenia, which is the SARS-CoV-2 infection and the therapeutic challenges it poses in association with an autoimmune disease such as rheumatoid arthritis.


2022 ◽  
Vol 524 ◽  
pp. 259-267
Author(s):  
Roland Houben ◽  
Sonja Hesbacher ◽  
Bhavishya Sarma ◽  
Carolin Schulte ◽  
Eva-Maria Sarosi ◽  
...  

2021 ◽  
pp. 440-460
Author(s):  
Devlina Ghosh ◽  
Bingxin Bai ◽  
Qun Ji ◽  
Soumya Palliyil ◽  
Guang Yang ◽  
...  

The coronavirus disease 2019 (COVID-19) results from the infection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and primarily affects the respiratory tissue. Since first reported from Wuhan, China in December 2019, the virus has resulted in an unprecedented pandemic. Vaccination against SARS-CoV-2 can control the further spread of the ongoing pandemic by making people immunised to SARS-CoV-2. Several vaccines have been approved for use in clinics, a lot many are in different stages of development. Diligent interpretations from the preclinical evaluation are crucial to identify the most effective and safest vaccine candidates. Multiple vaccine candidates/variants have been tested in small animal models with relative ease and further in non-human primate models before being taken into clinical development. Here, we review the state-of-the-art strategies employed for a thorough preclinical evaluation of COVID-19 vaccine candidates. We summarise the methods in place to identify indicators which make the vaccine candidate effective in controlling SARS-CoV-2 infection and/or COVID-19 and are safe for administration as inferred by their (1) biophysical/functional attributes (antigen expression, organization, functionality, and stability); (2) immunogenicity in animal models and protective correlates [SARS-CoV-2 specific binding/neutralising immunoglobulin titer, B/T-cell profiling, balanced T-helper type-1 (Th1) or type-2 (Th2) response (Th1:Th2), and anamnestic response]; (3) protective correlates as interpreted by controlled pathology of the respiratory tissue (pulmonary clinical and immunopathology); and finally, (4) strategies to monitor adverse effects of the vaccine candidates.


2021 ◽  
Vol 6 (6-1) ◽  
pp. 19-30
Author(s):  
L. Yu. Khamnueva ◽  
T. N. Iureva ◽  
L. S. Andreeva ◽  
E. V. Chugunova

Autoimmune polyendocrine syndrome type 1 (APS type 1) is a disease characterized by a variety of clinical manifestations resulting from the involvement of multiple endocrine and non-endocrine organs in the pathological process. APS type 1 is a rare genetically determined disease with autosomal recessive inheritance. Mutations in the autoimmune regulator gene (AIRE) lead to a disruption of the mechanism of normal antigen expression and the formation of abnormal clones of immune cells, and can cause autoimmune damage to organs. Within APS type 1, the most common disorders are primary adrenal insufficiency, hypoparathyroidism, and chronic candidiasis. Some understudied clinical manifestations of APS type 1 are autoimmune pathological processes in the eye: keratoconjunctivitis, dry eye syndrome, iridocyclitis, retinopathy, retinal detachment, and optic atrophy. This review presents the accumulated experimental and clinical data on the development of eye damage of autoimmune nature in APS type 1, as well as the laboratory and instrumental methods used for diagnosing the disease. Changes in the visual organs in combination with clinical manifestations of hypoparathyroidism, adrenal insufficiency and candidiasis should lead the clinical doctor to suspect the presence of APS type 1 and to examine the patient comprehensively. Timely genetic counselling will allow early identifi cation of the disease, timely prescription of appropriate treatment and prevention of severe complications.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Vita Golubovskaya

Recently, novel types of immunotherapies such as CAR-T cell therapy demonstrated efficacy in leukemia, lymphoma, and multiple myeloma [1–3]. CD19 and BCMA-CAR-T cell therapies were approved by FDA to treat patients with the above diseases. There are still several challenges for CAR-T cell therapy, including safe and effective antigen targets for solid tumors, overcoming a suppressive tumor microenvironment, and loss of antigen expression, among others [4,5][...]


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Katherine A Deets ◽  
Randilea Nichols Doyle ◽  
Isabella Rauch ◽  
Russell E Vance

The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens are cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (cDC1), whereas cross-priming in the presence of pyroptosis required a Zbtb26+ but Batf3-independent cDC population. These data suggest the existence of parallel pyroptosis-dependent and pyroptosis-independent pathways for cross-presentation of IEC-derived antigens.


2021 ◽  
Vol 11 (4) ◽  
pp. 328-336
Author(s):  
D. A. Ryabchikov ◽  
S. V. Chulkova ◽  
F. A. Shamilov ◽  
N. V. Chanturiya ◽  
S. D. Zheltikov ◽  
...  

Breast cancer (BC) is most prevalent female malignancy worldwide. Despite advances in BC diagnosis and progress in drug therapy, a series of challenges associated with emergent tumour resistance causing the disease escalation still remain. Immune evasion is among the driving forces of tumour resistance against modern treatments, which promotes world-active research into the mechanisms of tumour—immune interaction.Tumour microenvironment is known to contribute greatly to the nature of this interaction. Immune cells are constitutive of tumour microenvironment as tumour-associated macrophages, myeloid-derived suppressor cells and tumour-infi ltrating lymphocytes. Tumour-infi ltrating lymphocytes are represented by B-, T- and NK-cells, which localisation and subpopulation structure in tumour may possess a prognostic and clinical significance. Th e infi ltration density by certain effector cell types prior to chemotherapy is an important predictor of patient survival. Putting otherwise, the presence of effector lymphocyte subpopulations in tumour defi nes the strength of antitumour immunity and may establish the success of drug treatment.This study analysed the infiltration levels of CD3, CD4, CD20 and CD38 lymphocytes in several molecular BC subtypes. Tumour immunophenotyping was performed in cryosectioning and immunofl uorescence assays with a ZEISS AXIOSKOP microscope, Germany. We analysed 96 luminal BC (37 subtype A (38.5 %), 52 B-Her2-negative subtype (54.2 %), 7 B-Her2-positive subtype (7.3 %)) and non-luminal BC samples (3 HER2+ subtype (14.3 %), 18 triple-negative subtype (85.7 %)). The infiltration and antigen expression patterns have been assessed. Analyses of tumour-infi ltrating subpopulations revealed lower infiltration in luminal BC vs. other subtypes, albeit at no significance.


Sign in / Sign up

Export Citation Format

Share Document