Cell Cycle
Recently Published Documents


TOTAL DOCUMENTS

54445
(FIVE YEARS 18012)

H-INDEX

333
(FIVE YEARS 74)

2021 ◽  
Vol 14 (12) ◽  
pp. 1834-1842
Author(s):  
Xin Hua ◽  
◽  
Guo-Sheng Gao ◽  
Xiao-Lei Ye ◽  
◽  
...  

AIM: To investigate the inhibitory effect of the combined use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and oridonin on choroidal melanoma cell lines, and to explore its underlying mechanism. METHODS: MUM-2B and C918 cells were treated with different concentrations of TRAIL and oridonin, and MTT assay used to evaluate the inhibition rate of the two compounds on cells. Then, the cell cycle distribution and apoptosis were detected by flow cytometry, and changes in apoptosis-related proteins such as death receptor 5 (DR5), a-caspase-3, and x-linked inhibitor of apoptosis protein (XIAP) were detected by Western blot. MUM-2B cells were transfected with si-DR5, which interfered with the expression of the DR5 gene. MTT and Western blot assay were used to detect cell activity and apoptosis-related proteins. RESULTS: When TRAIL and oridonin were simultaneously administered to the MUM-2B cells, the apoptosis rate was significantly higher than that by the two drugs individually. However, the effect of combined use of TRAIL and oridonin on C918 cells was not significantly different from that used alone. Cell cycle analysis showed that TRAIL and oridonin could induce G2/M arrest in MUM-2B cells. The Western blot results showed that the protein expression levels of the DR5, a-caspase-3, and BAX increased, while the expression levels of the anti-apoptosis-related proteins XIAP and BCL-2 were suppressed when TRAIL and oridonin simultaneously administered to MUM-2B cells. Interfering the expression of DR5 gene in MUM-2B cells could reverse the inhibitory effect of oridonin and TRAIL on the proliferation and apoptosis induction of MUM-2B cells. CONCLUSION: The inhibitory effects of oridonin and TRAIL on MUM-2B cells are significantly enhanced when they were administered as a combined treatment, which may ascribe to up-regulation of DR5.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Ying Xing ◽  
Yang Liu ◽  
Zhong Qi ◽  
Zhengrong Liu ◽  
Xin Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is now the second leading cause of cancer death worldwide and lacks effectual therapy due to its high rate of tumor recurrence and metastasis. The aim of this study was to investigate the effects of L antigen family member 3 (LAGE3, a member of the LAGE gene family involved in positive transcription) on the progression of HCC. Methods The expression of LAGE3 was detected by quantitative real-time polymerase chain reaction. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation assay, EdU, and cell cycle analysis assay were employed to evaluate the proliferation of HCC cells. Annexin V-FITC/PI and TUNEL assay were used to assess the apoptosis rate of HCC cells. Wound healing and transwell assay were used to investigate the migration and invasion of HCC cells. A xenograft model of HCC was established with 2 × 106 Hep3B or SK-HEP1 cells to investigate the in vivo effects of LAGE3. Then, the protein levels of LAGE3, p-p38, p-38, c-Jun N-terminal kinase (JNK),p-JNK, extracellular signal-regulated kinase (ERK), and p-ERK were detected by western blot. Results We found that LAGE3 was upregulated in HCC tissues compared to adjacent tissues, and its high expression was correlated with poor overall survival by bioinformatics analysis. Next, we manually regulated the expression of LAGE3 in HCC cells. The knockdown of LAGE3 inhibited the proliferation of HCC cells by arresting the cell cycle in G1 phase. Also the downregulation of LAGE3 inhibited cell migration and invasion and induced apoptosis of HCC cells, while overexpression of LAGE3 promoted the malignant phenotypes of HCC. These results were further confirmed by the in vivo growth of HCC xenografts and the inhibition of apoptosis of HCC tumor cells. Furthermore, we found that LAGE3 exerted cancer-promoting effects by potentiating the JNK and ERK signaling pathway. An ERK inhibitor (10 μM SCH772984) or JNK inhibitor (25 μM SP600125) repressed the upregulated LAGE3-induced proliferation, migration, and invasion of HCC cells. Conclusions LAGE3 enhanced the malignant phenotypes of HCC by promoting the JNK and ERK signaling pathway.


2022 ◽  
Vol 194 ◽  
pp. 113025
Author(s):  
Milada Vítová ◽  
Mária Čížková ◽  
Vít Náhlík ◽  
Tomáš Řezanka

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Silvia Martini ◽  
Khalil Davis ◽  
Rupert Faraway ◽  
Lisa Elze ◽  
Nicola Lockwood ◽  
...  

AbstractThe PKCε-regulated genome protective pathway provides transformed cells a failsafe to successfully complete mitosis. Despite the necessary role for Aurora B in this programme, it is unclear whether its requirement is sufficient or if other PKCε cell cycle targets are involved. To address this, we developed a trapping strategy using UV-photocrosslinkable amino acids encoded in the PKCε kinase domain. The validation of the mRNA binding protein SERBP1 as a PKCε substrate revealed a series of mitotic events controlled by the catalytic form of PKCε. PKCε represses protein translation, altering SERBP1 binding to the 40 S ribosomal subunit and promoting the assembly of ribonucleoprotein granules containing SERBP1, termed M-bodies. Independent of Aurora B, SERBP1 is shown to be necessary for chromosome segregation and successful cell division, correlating with M-body formation. This requirement for SERBP1 demonstrates that Aurora B acts in concert with translational regulation in the PKCε-controlled pathway exerting genome protection.


2021 ◽  
Author(s):  
Viola Introini ◽  
Gururaj Rao Kidiyoor ◽  
Giancarlo Porcella ◽  
Marco Foiani ◽  
Pietro Cicuta ◽  
...  

The cell nucleus plays a central role in several key cellular processes, including chromosome organisation, replication and transcription. Recent work intriguingly suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and early mitosis, which are initially transient, but develop into instabilities that culminate into nuclear-envelope breakdown in mitosis. Perturbation experiments and correlation analysis reveal an association of these processes with chromatin condensation. We propose that the contrasting forces between an extensile stress and centripetal pulling from chromatin condensation could link mechanically chromosome condensation and nuclear-envelope breakdown, the two main nuclear processes during mitosis.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1755
Author(s):  
Lavinia Caba ◽  
Laura Florea ◽  
Cristina Gug ◽  
Daniela Cristina Dimitriu ◽  
Eusebiu Vlad Gorduza

Circular RNA (circRNA) is a distinct class of non-coding RNA produced, in principle, using a back-splicing mechanism, conserved during evolution, with increased stability and a tissue-dependent expression. Circular RNA represents a functional molecule with roles in the regulation of transcription and splicing, microRNA sponge, and the modulation of protein–protein interaction. CircRNAs are involved in essential processes of life such as apoptosis, cell cycle, and proliferation. Due to the regulatory role (upregulation/downregulation) in pathogenic mechanisms of some diseases (including cancer), its potential roles as a biomarker or therapeutic target in these diseases were studied. This review focuses on the importance of circular RNA in cancer.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5898
Author(s):  
Tao Yu ◽  
Junguo Cao ◽  
Montadar Alaa Eddine ◽  
Mahmoud Moustafa ◽  
Andreas Mock ◽  
...  

To date, there is no standard-of-care systemic therapy for the treatment of aggressive meningiomas. Receptor tyrosine kinases (RTK) are frequently expressed in aggressive meningiomas and are associated with poor survival. Ponatinib is a FDA- and EMA-approved RTK inhibitor and its efficacy in meningioma has not been studied so far. Therefore, we investigated ponatinib as a potential drug candidate against meningioma. Cell viability and cell proliferation of ponatinib-treated meningioma cells were assessed using crystal violet assay, manual counting and BrdU assay. Treated meningioma cell lines were subjected to flow cytometry to evaluate the effects on cell cycle and apoptosis. Meningioma-bearing mice were treated with ponatinib to examine antitumor effects in vivo. qPCR was performed to assess the mRNA levels of tyrosine kinase receptors after ponatinib treatment. Full-length cDNA sequencing was carried out to assess differential gene expression. IC50 values of ponatinib were between 171.2 and 341.9 nM in three meningioma cell lines. Ponatinib induced G0/G1 cell cycle arrest and subsequently led to an accumulation of cells in the subG1-phase. A significant induction of apoptosis was observed in vitro. In vivo, ponatinib inhibited meningioma growth by 72.6%. Mechanistically, this was associated with downregulation of PDGFRA/B and FLT3 mRNA levels, and mitochondrial dysfunction. Taken together, ponatinib is a promising candidate for targeted therapy in the treatment of aggressive meningioma.


2021 ◽  
Author(s):  
Maria Secrier ◽  
Anna Wiecek ◽  
Stephen Cutty ◽  
Daniel Kornai ◽  
Mario Parreno-Centeno ◽  
...  

Abstract Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative, quiescent or ‘dormant’ state, which is difficult to capture and whose mutational drivers remain largely unknown. We developed methodology to uniquely identify this state from transcriptomic signals and characterised its prevalence and genomic constraints in solid primary tumours. We show dormancy preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We uncover novel genomic dependencies of this process, including the amplification of the centrosomal gene CEP89 as a driver of dormancy impairment. Lastly, we demonstrate that dormancy underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single cell data, and propose a signature of dormancy-linked therapeutic resistance to further study and clinically track this state.


Sign in / Sign up

Export Citation Format

Share Document