dna polymerase delta
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 26)

H-INDEX

41
(FIVE YEARS 4)

DNA Repair ◽  
2022 ◽  
pp. 103272
Author(s):  
Michal Dmowski ◽  
Malgorzata Jedrychowska ◽  
Karolina Makiela-Dzbenska ◽  
Milena Denkiewicz-Kruk ◽  
Sushma Sharma ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Shuai Zhao ◽  
Cuicui Wei ◽  
Haijia Tang ◽  
Han Ding ◽  
Bing Han ◽  
...  

Background and ObjectiveHepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway.MethodsData mining was conducted using bioinformatics methods. RNA sequencing and clinicopathological data were collected from The Cancer Genome Atlas, GTEx database and the Gumz Renal cohort. Statistical analyses were also performed in cancer samples (n>12,000) and the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN, n=107) cohort.ResultsThe POLD family (POLD1–4) was identified as the most important functional component of the DDR pathway. Based on the analysis of independent cohorts, we found significantly elevated POLD expression in HCC compared with normal tissues. Second, we investigated the prognostic implication of elevated POLD1 expression in HCC and pan-cancers, revealing that increased POLD1 levels were correlated to worse prognoses for HCC patients. Additionally, we identified 11 hub proteins interacting closely with POLD proteins in base excision repair, protein-DNA complex and mismatch repair signaling pathways. Moreover, POLD1 mutation functioned as an independent biomarker to predict the benefit of targeted treatment. Importantly, POLD1 expression was associated with immune checkpoint molecules, including CD274, CD80, CD86, CTLA4, PDCD1 and TCGIT, and facilitated an immune-excluded tumor microenvironment. Additionally, we confirmed that elevated POLD1 expression was closely correlated with the aggressive progression and poor prognosis of HCC in the real-world AHYMUN cohort.ConclusionWe identified a significant association between elevated POLD1 expression and poor patient survival and immune-excluded tumor microenvironment of HCC. Together, these findings indicate that POLD1 provides a valuable biomarker to guide the molecular diagnosis and development of novel targeted therapeutic strategies for HCC patients.


DNA Repair ◽  
2021 ◽  
pp. 103216
Author(s):  
Seijiro Shioi ◽  
Akiyoshi Shimamoto ◽  
Yingxia Song ◽  
Kyoko Hidaka ◽  
Maki Nakamura ◽  
...  

Author(s):  
Armaan Dhaliwal ◽  
Soumiya Ravi ◽  
Kanwal Naveen Bains ◽  
Anil Potharaju ◽  
Tasneem Shah

A patient with a history of Mandibular hypoplasia, Deafness, Progeroid Features Associated Lipodystrophy Syndrome (MDPL), a familial lipodystrophy presented with hypertriglyceridemia induced pancreatitis with triglycerides in the 3000s. This lipodystrophy occurs due to a mutation in the POLD1 gene (DNA polymerase delta 1).


Author(s):  
Roland Chanet ◽  
Dorothée Baïlle ◽  
Marie-Pierre Golinelli-Cohen ◽  
Sylvie Riquier ◽  
Olivier Guittet ◽  
...  

Abstract B-type eukaryotic polymerases contain a [4Fe-4S] cluster in their C-terminus domain, whose role is not fully understood yet. Among them, DNA polymerase delta (Polδ) plays an essential role in chromosomal DNA replication, mostly during lagging strand synthesis. Previous in vitro work suggested that the Fe-S cluster in Polδ is required for efficient binding of the Pol31 subunit, ensuring stability of the Polδ complex. Here we analyzed the in vivo consequences resulting from an impaired coordination of the Fe-S cluster in Polδ. We show that a single substitution of the very last cysteine coordinating the cluster by a serine is responsible for the generation of massive DNA damage during S phase, leading to checkpoint activation, requirement of homologous recombination for repair, and ultimately to cell death when the repair capacities of the cells are overwhelmed. These data indicate that impaired Fe-S cluster coordination in Polδ is responsible for aberrant replication. More generally, Fe-S in Polδ may be compromised by various stress including anti-cancer drugs. Possible in vivo Polδ Fe-S cluster oxidation and collapse may thus occur, and we speculate this could contribute to induced genomic instability and cell death, comparable to that observed in pol3-13 cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Wei ◽  
Alexander Ploss

AbstractHepatitis B virus (HBV) is a highly contagious pathogen that afflicts over a third of the world’s population, resulting in close to a million deaths annually. The formation and persistence of the HBV covalently closed circular DNA (cccDNA) is the root cause of HBV chronicity. However, the detailed molecular mechanism of cccDNA formation from relaxed circular DNA (rcDNA) remains opaque. Here we show that the minus and plus-strand lesions of HBV rcDNA require different sets of human repair factors in biochemical repair systems. We demonstrate that the plus-strand repair resembles DNA lagging strand synthesis, and requires proliferating cell nuclear antigen (PCNA), the replication factor C (RFC) complex, DNA polymerase delta (POLδ), flap endonuclease 1 (FEN-1), and DNA ligase 1 (LIG1). Only FEN-1 and LIG1 are required for the repair of the minus strand. Our findings provide a detailed mechanistic view of how HBV rcDNA is repaired to form cccDNA in biochemical repair systems.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009322
Author(s):  
Natasha C. Koussa ◽  
Duncan J. Smith

DNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.


2020 ◽  
Author(s):  
Zia Ur Rehman ◽  
Atsushi Tashibu ◽  
Michiyo Tashiro ◽  
Imran Rashid ◽  
Qasim Ali ◽  
...  

AbstractFasciola gigantica is considered to be a major pathogen causing fasciolosis in the Indian subcontinent, resulting in millions of dollars production losses to the livestock industry. To understand the dispersal origin and the spread patterns of F. gigantica is important for preventing the disease. A total of 53 Fasciola flukes collected from buffalo and goat in the Punjab province of Pakistan, were identified as F. gigantica based on the multiplex PCR for the phosphoenolpyruvate carboxykinase (pepck) and the PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (pold). A significant genetic difference between F. gigantica from buffalo and goats in Pakistan was indicated by the genetic analysis of two distinct mitochondrial markers [NADH dehydrogenase subunit 1 (nad1) and cytochrome C oxidase subunit 1 (cox1)]. Phylogenetic analysis of the seventeen nad1 haplotypes of F. gigantica from Pakistan with those in neighbouring countries of the Indian subcontinent revealed that all the haplotypes were clustered in haplogroup A. Fasciola gigantica with the eight haplotypes might be expanded in Pakistan from Indian origin, along with the migration of the domestic animals, since they were related to Indian haplotypes. In contrast, the remaining nine haplotypes were not shared with any neighbouring countries, suggesting independent origin, or possibly come from neighbouring Middle East countries. Our study provides a proof of concept for a method that could be used to investigate the epidemiology of F. gigantica regarding the development of sustainable parasite control strategies.


2020 ◽  
Author(s):  
Philip R. Strack ◽  
Erica J. Brodie ◽  
Hanmiao Zhan ◽  
Verena J. Schuenemann ◽  
Liz J. Valente ◽  
...  

SummaryPolymerase δ interacting protein of 38 kDa (PDIP38) was originally identified in a yeast two hybrid screen as an interacting protein of DNA polymerase delta, more than a decade ago. Since this time several subcellular locations have been reported and hence its function remains controversial. Our current understanding of PDIP38 function has also been hampered by a lack of detailed biochemical or structural analysis of this protein. Here we show, that human PDIP38 is directed to the mitochondrion, where it resides in the matrix compartment, together with its partner protein CLPX. PDIP38 is a bifunctional protein, composed of two conserved domains separated by an α-helical hinge region (or middle domain). The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like β-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain (ZBD) of CLPX. In contrast, the C-terminal (DUF525) domain forms an Immunoglobin-like β-sandwich fold, which contains a highly conserved hydrophobic groove. Based on the physicochemical properties of this groove, we propose that PDIP38 is required for the recognition (and delivery to CLPXP) of proteins bearing specific hydrophobic degrons, potentially located at the termini of the target protein. Significantly, interaction with PDIP38 stabilizes the steady state levels of CLPX in vivo. Consistent with these data, PDIP38 inhibits the LONM-mediated turnover of CLPX in vitro. Collectively, our findings shed new light on the mechanistic and functional significance of PDIP38, indicating that in contrast to its initial identification as a nuclear protein, PIDP38 is a bona fide mitochondrial adaptor protein for the CLPXP protease.


2020 ◽  
Author(s):  
Prashant Khandagale ◽  
Shweta Thakur ◽  
Narottam Acharya

AbstractDNA polymerase delta (Polδ) is a highly processive essential replicative DNA polymerase. In humans, Polδ holoenzyme consists of p125, p50, p68, and p12 subunits and recently, we have shown that p12 exists as a dimer. Extensive biochemical studies suggest that all the subunits of Polδ interact with the processivity factor proliferating cell nuclear antigen (PCNA) to carry out a pivotal role in genomic DNA replication. While PCNA interaction protein (PIP) motifs in p68, p50 and p12 have been mapped, the PIP in p125, the catalytic subunit of the holoenzyme, remains elusive. Therefore, in this study by using multiple approaches we have conclusively mapped a non-canonical PIP box from residues 999VGGLLAFA1008 in p125, which binds to inter domain-connecting loop of PCNA with high affinity. Collectively, including previous studies, we conclude that similar to S. cerevisiae Polδ, each of the human Polδ subunits possess motif to interact with PCNA and significantly contribute towards the processive nature of this replicative DNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document