Translations: On the Development of the Transversely Striated Muscular Fibre, in Man, from Simple Cells

1859 ◽  
Vol s1-7 (25) ◽  
pp. 54-56
Author(s):  
A. KÖLLIKER
Keyword(s):  
2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  

Neuron ◽  
2001 ◽  
Vol 30 (1) ◽  
pp. 263-274 ◽  
Author(s):  
Ilan Lampl ◽  
Jeffrey S. Anderson ◽  
Deda C. Gillespie ◽  
David Ferster

1993 ◽  
Vol 70 (5) ◽  
pp. 1885-1898 ◽  
Author(s):  
D. J. Heeger

1. A longstanding view of simple cells is that they sum their inputs linearly. However, the linear model falls short of a complete account of simple-cell direction selectivity. We have developed a nonlinear model of simple-cell responses (hereafter referred to as the normalization model) to explain a larger body of physiological data. 2. The normalization model consists of an underlying linear stage along with two additional nonlinear stages. The first is a half-squaring nonlinearity; half-squaring is half-wave rectification followed by squaring. The second is a divisive normalization non-linearity in which each model cell is suppressed by the pooled activity of a large number of cells. 3. By comparing responses with counterphase (flickering) gratings and drifting gratings, researchers have demonstrated that there is a nonlinear contribution to simple-cell responses. Specifically they found 1) that the linear prediction from counterphase grating responses underestimates a direction index computed from drifting grating responses, 2) that the linear prediction correctly estimates responses to gratings drifting in the preferred direction, and 3) that the linear prediction overestimates responses to gratings drifting in the nonpreferred direction. 4. We have simulated model cell responses and derived mathematical expressions to demonstrate that the normalization model accounts for this empirical data. Specifically the model behaves as follows. 1) The linear prediction from counterphase data underestimates the direction index computed from drifting grating responses. 2) The linear prediction from counterphase data overestimates the response to gratings drifting in the nonpreferred direction. The discrepancy between the linear prediction and the actual response is greater when using higher contrast stimuli. 3) For an appropriate choice of contrast, the linear prediction from counterphase data correctly estimates the response to gratings drifting in the preferred direction. For higher contrasts the linear prediction overestimates the actual response, and for lower contrasts the linear prediction underestimates the actual response. 5. In addition, the normalization model is qualitatively consistent with data on the dynamics of simple-cell responses. Tolhurst et al. found that simple cells respond with an initial transient burst of activity when a stimulus first appears. The normalization model behaves similarly; it takes some time after a stimulus first appears before the model cells are fully normalized. We derived the dynamics of the model and found that the transient burst of activity in model cells depends in a particular way on stimulus contrast. The burst is short for high-contrast stimuli and longer for low-contrast stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 66 (2) ◽  
pp. 505-529 ◽  
Author(s):  
R. C. Reid ◽  
R. E. Soodak ◽  
R. M. Shapley

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude of the preferred response but overestimates the nonpreferred response. 2. The main paradigm consisted of comparing the responses of simple cells to contrast reversal sinusoidal gratings with their responses to drifting gratings (of the same orientation, contrast, and spatial and temporal frequencies) in both directions of motion. Although it is known that simple cells display spatiotemporally inseparable responses to contrast reversal gratings, this spatiotemporal inseparability is demonstrated here to predict a certain amount of direction selectivity under the assumption that simple cells sum their inputs linearly. 3. The linear prediction of the directional index (DI), a quantitative measure of the degree of direction selectivity, was compared with the measured DI obtained from the responses to drifting gratings. The median value of the ratio of the two was 0.30, indicating that there is a significant nonlinear component to direction selectivity. 4. The absolute magnitudes of the responses to gratings moving in both directions of motion were compared with the linear predictions as well. Whereas the preferred direction response showed only a slight amount of facilitation compared with the linear prediction, there was a significant amount of nonlinear suppression in the nonpreferred direction. 5. Spatiotemporal inseparability was demonstrated also with stationary temporally modulated bars. The time course of response to these bars was different for different positions in the receptive field. The degree of spatiotemporal inseparability measured with sinusoidally modulated bars agreed quantitatively with that measured in experiments with stationary gratings. 6. A linear prediction of the responses to drifting luminance borders was compared with the actual responses. As with the grating experiments, the prediction was qualitatively accurate, giving the correct preferred direction but underestimating the magnitude of direction selectivity observed.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 20 (5) ◽  
pp. 1261-1284 ◽  
Author(s):  
Cornelius Weber ◽  
Jochen Triesch

Current models for learning feature detectors work on two timescales: on a fast timescale, the internal neurons' activations adapt to the current stimulus; on a slow timescale, the weights adapt to the statistics of the set of stimuli. Here we explore the adaptation of a neuron's intrinsic excitability, termed intrinsic plasticity, which occurs on a separate timescale. Here, a neuron maintains homeostasis of an exponentially distributed firing rate in a dynamic environment. We exploit this in the context of a generative model to impose sparse coding. With natural image input, localized edge detectors emerge as models of V1 simple cells. An intermediate timescale for the intrinsic plasticity parameters allows modeling aftereffects. In the tilt aftereffect, after a viewer adapts to a grid of a certain orientation, grids of a nearby orientation will be perceived as tilted away from the adapted orientation. Our results show that adapting the neurons' gain-parameter but not the threshold-parameter accounts for this effect. It occurs because neurons coding for the adapting stimulus attenuate their gain, while others increase it. Despite its simplicity and low maintenance, the intrinsic plasticity model accounts for more experimental details than previous models without this mechanism.


2010 ◽  
Vol 2 (7) ◽  
pp. 286-286
Author(s):  
J. C. A. Read ◽  
B. G. Cumming ◽  
A. J. Parker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document