cell responses
Recently Published Documents


TOTAL DOCUMENTS

12353
(FIVE YEARS 3638)

H-INDEX

209
(FIVE YEARS 49)

2022 ◽  
Vol 104 ◽  
pp. 108522
Author(s):  
Atefeh Mohseninia ◽  
Parva Dehghani ◽  
Afshar Bargahi ◽  
Mazda Rad-Malekshahi ◽  
Raha Rahimikian ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Elisa Pesce ◽  
Nicola Manfrini ◽  
Chiara Cordiglieri ◽  
Spartaco Santi ◽  
Alessandra Bandera ◽  
...  

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.


2022 ◽  
Vol 12 ◽  
Author(s):  
Marco Iannetta ◽  
Doriana Landi ◽  
Gaia Cola ◽  
Laura Campogiani ◽  
Vincenzo Malagnino ◽  
...  

BackgroundVaccination campaign to contrast the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised the issue of vaccine immunogenicity in special populations such as people with multiple sclerosis (PwMS) on highly effective disease modifying treatments (DMTs). While humoral responses to SARS-CoV-2 mRNA vaccines have been well characterized in the general population and in PwMS, very little is known about cell-mediated responses in conferring protection from SARS-CoV-2 infection and severe coronavirus disease-2019 (COVID-19).MethodsPwMS on ocrelizumab, fingolimod or natalizumab, vaccinated with two doses of mRNABNT162b2 (Comirnaty®) vaccine were enrolled. Anti-Spike (S) and anti-Nucleoprotein (N) antibody titers, IFN-gamma production upon S and N peptide libraries stimulation, peripheral blood lymphocyte absolute counts were assessed after at least 1 month and within 4 months from vaccine second dose administration. A group of age and sex matched healthy donors (HD) were included as reference group. Statistical analysis was performed using GraphPad Prism 8.2.1.ResultsThirty PwMS and 9 HDs were enrolled. All the patients were negative for anti-N antibody detection, nor reported previous symptoms of COVID-19. Peripheral blood lymphocyte counts were assessed in PwMS showing: (i) reduction of circulating B-lymphocytes in PwMS on ocrelizumab; (ii) reduction of peripheral blood B- and T-lymphocyte absolute counts in PwMS on fingolimod and (iii) normal B- and T-lymphocyte absolute counts with an increase in circulating CD16+CD56+ NK-cells in PwMS on natalizumab. Three patterns of immunological responses were identified in PwMS. In patients on ocrelizumab, anti-S antibody were lacking or reduced, while T-cell responses were normal. In patients on fingolimod both anti-S titers and T-cell mediated responses were impaired. In patients on natalizumab both anti-S titers and T-cell responses were present and comparable to those observed in HD.ConclusionsThe evaluation of T-cell responses, anti-S titers and peripheral blood lymphocyte absolute count in PwMS on DMTs can help to better characterize the immunological response after SARS-CoV-2 vaccination. The evaluation of T-cell responses in longitudinal cohorts of PwMS will help to clarify their protective role in preventing SARS-CoV-2 infection and severe COVID-19. The correlation between DMT treatment and immunological responses to SARS-CoV-2 vaccines could help to better evaluate vaccination strategies in PwMS.


2022 ◽  
Author(s):  
Mladen Jergovic ◽  
Christopher P Coplen ◽  
Jennifer L Uhrlaub ◽  
Shawn C Beitel ◽  
Jefferey L Burgess ◽  
...  

Emergence of the SARS-CoV-2 variant-of-concern (VOC) B.1.1.529 (Omicron) in late 2021 has raised alarm among scientific and health care communities due to a surprisingly large number of mutations in its spike protein. Public health surveillance indicates that the Omicron variant is significantly more contagious than the previously dominant VOC, B.1.617.2 (Delta). Several early reports demonstrated that Omicron exhibits a higher degree (~10-30-fold) of escape from antibody neutralization compared to earlier lineage variants. Therefore, it is critical to determine how well the second line of adaptive immunity, T cell memory, performs against Omicron in people following COVID-19 infection and/or vaccination. To that purpose, we analyzed a cohort (n=345 subjects) of two- or three- dose messenger RNA (mRNA) vaccine recipients and COVID-19 post infection subjects (including those receiving 2 doses of mRNA vaccine after infection), recruited to the CDC-sponsored AZ HEROES research study, alongside 32 pre-pandemic control samples. We report that T cell responses against Omicron spike peptides were largely preserved in all cohorts with established immune memory. IFN-gamma producing T cell responses remained equivalent to the response against the ancestral strain (WA1/2020), with some (<20%) loss in IL-2 single- or IL-2+IFN-gamma+ poly-functional responses. Three-dose vaccinated participants had similar responses to Omicron relative to convalescent or convalescent plus two-dose vaccinated groups and exhibited responses significantly higher than those receiving two mRNA vaccine doses. These results provide further evidence that a three-dose vaccine regimen benefits the induction of optimal functional T cell immune memory.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hui Zhang ◽  
Shuang Cao ◽  
Yang Gao ◽  
Xiao Sun ◽  
Fanming Jiang ◽  
...  

A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Reza Hosseini ◽  
Hamzeh Sarvnaz ◽  
Maedeh Arabpour ◽  
Samira Molaei Ramshe ◽  
Leila Asef-Kabiri ◽  
...  

AbstractTumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.


2022 ◽  
Author(s):  
Viljem Pohorec ◽  
Lidija Krizancic Bombek ◽  
Masa Skelin Klemen ◽  
Jurij Dolensek ◽  
Andraz Stozer

Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between NMRI, C57BL/6J, and C57BL/6N mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease.


2022 ◽  
Vol 7 (67) ◽  
Author(s):  
Owen Jensen ◽  
Shubhanshi Trivedi ◽  
Jeremy D. Meier ◽  
Keke C. Fairfax ◽  
J. Scott Hale ◽  
...  

We identify a MAIT cell subset expressing T follicular helper markers and show the ability of MAIT cells to support B cell responses in the mucosa.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 344
Author(s):  
Natalia Diaz-Garrido ◽  
Josefa Badia ◽  
Laura Baldomà

Gut bacteria release extracellular vesicles (BEVs) as an intercellular communication mechanism that primes the host innate immune system. BEVs from E. coli activate dendritic cells (DCs) and subsequent T-cell responses in a strain-specific manner. The specific immunomodulatory effects were, in part, mediated by differential regulation of miRNAs. This study aimed to deepen understanding of the mechanisms of BEVs to drive specific immune responses by analyzing their impact on DC-secreted cytokines and exosomes. DCs were challenged with BEVs from probiotic and commensal E. coli strains. The ability of DC-secreted factors to activate T-cell responses was assessed by cytokine quantification in indirect DCs/naïve CD4+ T-cells co-cultures on Transwell supports. DC-exosomes were characterized in terms of costimulatory molecules and miRNAs cargo. In the absence of direct cellular contacts, DC-secreted factors triggered secretion of effector cytokines by T-cells with the same trend as direct DC/T-cell co-cultures. The main differences between the strains influenced the production of Th1- and Treg-specific cytokines. Exosomes released by BEV-activated DCs were enriched in surface proteins involved in antigen presentation and T-cell activation, but differed in the content of immune-related miRNA, depending on the origin of the BEVs. These differences were consistent with the derived immune responses.


Sign in / Sign up

Export Citation Format

Share Document