PROLONGED LEG EXERCISE FAILS TO INCREASE MUSCLE SYMPATHETIC NERVE ACTIVITY

1992 ◽  
Vol 24 (Supplement) ◽  
pp. S164
Author(s):  
Chester A. Ray ◽  
Mary P. Clary
1993 ◽  
Vol 75 (1) ◽  
pp. 228-232 ◽  
Author(s):  
C. A. Ray ◽  
A. L. Mark

Recent studies have shown a lack of an increase in muscle sympathetic nerve activity (MSNA) during leg exercise. Experiments using isometric knee extension (IKE) have shown a biphasic response in MSNA with a decrease during the 1st min and a return of MSNA to control levels during the 2nd min of IKE. Moreover, MSNA was not augmented during postexercise muscle ischemia (PEMI) of the exercising leg, suggesting that the muscle metaboreflex may have not been engaged in these experiments. The purpose of the present study was 1) to examine MSNA during IKE performed to fatigue to determine whether MSNA could be increased with leg exercise and 2) to determine whether increases in MSNA during fatiguing IKE were associated with an augmented MSNA response during PEMI. IKE was initially performed to fatigue at 30% of maximal voluntary contraction in the sitting position (n = 7; trial 1). IKE elicited a marked increase in mean arterial pressure and heart rate (P < 0.01). Total MSNA (burst frequency x mean burst amplitude; units) in the contralateral leg increased 96 +/- 40% (P < 0.01) above control levels during the final 30 s of IKE (207 +/- 23 s). Subjects (n = 8) then performed IKE to fatigue followed by PEMI (trial 2). MSNA in the contralateral leg increased 107 +/- 50% (P < 0.01) above control levels during the final 30 s of IKE (169 +/- 12 s) and remained significantly elevated during PEMI (83 +/- 40% above control), indicating that the muscle metaboreflex was engaged during fatiguing IKE.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 314 (1) ◽  
pp. H3-H10 ◽  
Author(s):  
Connor J. Doherty ◽  
Anthony V. Incognito ◽  
Karambir Notay ◽  
Matthew J. Burns ◽  
Joshua T. Slysz ◽  
...  

The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.


Diabetes ◽  
1993 ◽  
Vol 42 (3) ◽  
pp. 375-380 ◽  
Author(s):  
R. P. Hoffman ◽  
C. A. Sinkey ◽  
M. G. Kienzle ◽  
E. A. Anderson

Sign in / Sign up

Export Citation Format

Share Document