scholarly journals EXPECTED NUMBER OF REAL ZEROS OF A CLASS OF RANDOM HYPERBOLIC POLYNOMIAL

Author(s):  
M.K. Mahanti ◽  
L. Sahoo
Author(s):  
Mina Ketan Mahanti ◽  
Amandeep Singh ◽  
Lokanath Sahoo

We have proved here that the expected number of real zeros of a random hyperbolic polynomial of the formy=Pnt=n1a1cosh⁡t+n2a2cosh⁡2t+⋯+nnancosh⁡nt, wherea1,…,anis a sequence of standard Gaussian random variables, isn/2+op(1). It is shown that the asymptotic value of expected number of times the polynomial crosses the levely=Kis alson/2as long asKdoes not exceed2neμ(n), whereμ(n)=o(n). The number of oscillations ofPn(t)abouty=Kwill be less thann/2asymptotically only ifK=2neμ(n), whereμ(n)=O(n)orn-1μ(n)→∞. In the former case the number of oscillations continues to be a fraction ofnand decreases with the increase in value ofμ(n). In the latter case, the number of oscillations reduces toop(n)and almost no trace of the curve is expected to be present above the levely=Kifμ(n)/(nlogn)→∞.


1998 ◽  
Vol 21 (2) ◽  
pp. 347-350
Author(s):  
K. Farahmand ◽  
M. Jahangiri

This paper provides the asymptotic estimate for the expected number of real zeros of a random hyperbolic polynomialg1coshx+2g2cosh2x+…+ngncoshnxwheregj,(j=1,2,…,n)are independent normally distributed random variables with mean zero and variance one. It is shown that for sufficiently largenthis asymptotic value is(1/π)logn.


Author(s):  
K. Farahmand ◽  
M. Sambandham

For random coefficientsajandbjwe consider a random trigonometric polynomial defined asTn(θ)=∑j=0n{ajcos⁡jθ+bjsin⁡jθ}. The expected number of real zeros ofTn(θ)in the interval(0,2π)can be easily obtained. In this note we show that this number is in factn/3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals(0,π)and(π,2π). It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined asPn(θ)=∑j=0naj(ω)cos⁡jθ, is also discussed.Tn(θ)has the advantage onPn(θ)of being stationary, with respect toθ, for which, therefore, a more advanced method developed could be used to yield the results.


2000 ◽  
Vol 23 (5) ◽  
pp. 335-342 ◽  
Author(s):  
J. Ernest Wilkins

Consider the random hyperbolic polynomial,f(x)=1pa1coshx+⋯+np×ancoshnx, in whichnandpare integers such thatn≥2,   p≥0, and the coefficientsak(k=1,2,…,n)are independent, standard normally distributed random variables. Ifνnpis the mean number of real zeros off(x), then we prove thatνnp=π−1 logn+O{(logn)1/2}.


Sign in / Sign up

Export Citation Format

Share Document