scholarly journals Study on the Construction of Dynamic Monitoring System of Inland Shipping Market Operation in the Yangtze River

Author(s):  
Chang LIU
2021 ◽  
Author(s):  
Junya Mei ◽  
Bo Zhou ◽  
Qiong Wu

The flood of the Yangtze River has the characteristics of high peak, large quantity and long duration. The Yangtze River Hydrology Bureau summarizes and combs the complete business process chain of flood hydrological monitoring, and gradually constructs the Yangtze River flood hydrological monitoring system. Including station network layout, early warning response, monitoring technology, information processing, results output and other dimensions. The hydrological monitoring system of the Yangtze River flood has been gradually constructed and has been successfully applied in many flood basins. Especially under the special situation of COVID-19 epidemic situation in 2020 and the severe flood situation in the Yangtze River Basin, the scientific and practical nature and practicability of the hydrological monitoring system of the Yangtze River flood are further verified. In view of the shortcomings existing in the existing monitoring system, this paper looks forward to the frontier technologies involved in flood monitoring, and has a certain reference function for flood hydrological emergency monitoring.


Author(s):  
C. Li ◽  
J. Yao ◽  
R. Li ◽  
Y. Zhu ◽  
H. Yao ◽  
...  

Abstract. For China, which has many big rivers, there is an urgent need for efficient dynamic monitoring technology of water and soil loss. However, there are some problems in the current 3S (RS, GIS and GPS) technology for dynamic monitoring water and soil loss. This paper takes the Yangtze River Basin as an example to innovate and optimize the key technologies of the remote sensing interpretation of the water and soil loss dynamic monitoring of the Yangtze River Basin, and overcome the major technical difficulties in the remote sensing interpretation of the dynamic monitoring of water and soil loss. The key technologies include: 1) The establishment of a field investigation platform based on Internet and UAV (Unmanned Aerial Vehicle) for remote sensing interpretation; 2) Near real-time evaluating key factors of soil and water loss based on UAV photogrammetry and digital terrain analysis; 3) Geometric and Radiometric Simultaneous Correction Model (GRSCM) framework for remote sensing images pre-processing; 4) An object-oriented land use change update quality control method supported by multi-PC and GIS; and an object-oriented remote sensing image classification system based on random forest, deep learning and transfer learning; 5) Improvement of quantitative change detection method for image vegetation and three-dimensional topography. The results have been successfully applied in the remote sensing interpretation of the dynamic monitoring of water and soil loss in the national key prevention and control area of the Yangtze River Basin. They have been provided a scientific reference for the development planning of The Yangtze River Economic Zone.


Laws ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Qiu Qiu ◽  
Liping Dai ◽  
Helena F. M. W. Van Rijswick ◽  
Gang Tu

The Yangtze River Basin is the largest river basin in China and has the most complex trans-boundary problems. The water quality monitoring system of the provincial boundary sections in the basin is the typical go-to system to show the interaction between administrative regions and basins. In this article, we discuss the water quality monitoring system in the basin from a legal perspective, explore the achievements and deficiencies of the system, and identify the main elements that constrain the effective operation of the system in the basin, including the fragmented competencies of monitoring institutions, the different monitoring techniques, the overlapping monitoring contents and scopes, the different data releasing channels, and the different applications of the data. We provide legislative suggestions to implement the newly enacted Yangtze River Protection Law and valuable lessons for the design of monitoring systems in other countries or (trans-boundary) basins that face a similar situation.


2004 ◽  
Vol 88 (8) ◽  
pp. 59-64
Author(s):  
Changyu Shao ◽  
Qinger Deng

Sign in / Sign up

Export Citation Format

Share Document