Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation

Author(s):  
Saharnaz Mehrani ◽  
Carlos Cardonha ◽  
David Bergman

In the bin-packing problem with minimum color fragmentation (BPPMCF), we are given a fixed number of bins and a collection of items, each associated with a size and a color, and the goal is to avoid color fragmentation by packing items with the same color within as few bins as possible. This problem emerges in areas as diverse as surgical scheduling and group event seating. We present several optimization models for the BPPMCF, including baseline integer programming formulations, alternative integer programming formulations based on two recursive decomposition strategies that utilize decision diagrams, and a branch-and-price algorithm. Using the results from an extensive computational evaluation on synthetic instances, we train a decision tree model that predicts which algorithm should be chosen to solve a given instance of the problem based on a collection of derived features. Our insights are validated through experiments on the aforementioned applications on real-world data. Summary of Contribution: In this paper, we investigate a colored variant of the bin-packing problem. We present and evaluate several exact mixed-integer programming formulations to solve the problem, including models that explore recursive decomposition strategies based on decision diagrams and a set partitioning model that we solve using branch and price. Our results show that the computational performance of the algorithms depends on features of the input data, such as the average number of items per bin. Our algorithms and featured applications suggest that the problem is of practical relevance and that instances of reasonable size can be solved efficiently.

2012 ◽  
Vol 222 (1) ◽  
pp. 125-141 ◽  
Author(s):  
Mauro Maria Baldi ◽  
Teodor Gabriel Crainic ◽  
Guido Perboli ◽  
Roberto Tadei

2011 ◽  
Vol 23 (3) ◽  
pp. 404-415 ◽  
Author(s):  
Samir Elhedhli ◽  
Lingzi Li ◽  
Mariem Gzara ◽  
Joe Naoum-Sawaya

Author(s):  
Natã Goulart ◽  
Thiago Ferreira de Noronha ◽  
Martin Gomez Ravetti ◽  
Mauricio Cardoso de Souza

In the integrated uncapacitated lot sizing and bin packing problem, we have to couple lot sizing decisions of replenishment from single product suppliers with bin packing decisions in the delivery of client orders. A client order is composed of quantities of each product, and the quantities of such an order must be delivered all together no later than a given period. The quantities of an order must all be packed in the same bin, and may be delivered in advance if it is advantageous in terms of costs. We assume a large enough set of homogeneous bins available at each period. The costs involved are setup and inventory holding costs and the cost to use a bin as well. All costs are variable in the planning horizon, and the objective is to minimize the total cost incurred. We propose mixed integer linear programming formulations and a combinatorial relaxation where it is no longer necessary to keep track of the specific bin where each order is packed. An aggregate delivering capacity is computed instead. We also propose heuristics using different strategies to couple the lot sizing and the bin packing subproblems. Computational experiments on instances with different configurations showed that the proposed methods are efficient ways to obtain small optimality gaps in reduced computational times.


Sign in / Sign up

Export Citation Format

Share Document