scholarly journals Sensitivity Analysis for the Stationary Distribution of Reflected Brownian Motion in a Convex Polyhedral Cone

Author(s):  
David Lipshutz ◽  
Kavita Ramanan

Reflected Brownian motion (RBM) in a convex polyhedral cone arises in a variety of applications ranging from the theory of stochastic networks to mathematical finance, and under general stability conditions, it has a unique stationary distribution. In such applications, to implement a stochastic optimization algorithm or quantify robustness of a model, it is useful to characterize the dependence of stationary performance measures on model parameters. In this paper, we characterize parametric sensitivities of the stationary distribution of an RBM in a simple convex polyhedral cone, that is, sensitivities to perturbations of the parameters that define the RBM—namely the covariance matrix, drift vector, and directions of reflection along the boundary of the polyhedral cone. In order to characterize these sensitivities, we study the long-time behavior of the joint process consisting of an RBM along with its so-called derivative process, which characterizes pathwise derivatives of RBMs on finite time intervals. We show that the joint process is positive recurrent and has a unique stationary distribution and that parametric sensitivities of the stationary distribution of an RBM can be expressed in terms of the stationary distribution of the joint process. This can be thought of as establishing an interchange of the differential operator and the limit in time. The analysis of ergodicity of the joint process is significantly more complicated than that of the RBM because of its degeneracy and the fact that the derivative process exhibits jumps that are modulated by the RBM. The proofs of our results rely on path properties of coupled RBMs and contraction properties related to the geometry of the polyhedral cone and directions of reflection along the boundary. Our results are potentially useful for developing efficient numerical algorithms for computing sensitivities of functionals of stationary RBMs.

2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


1985 ◽  
Vol 13 (3) ◽  
pp. 744-757 ◽  
Author(s):  
J. M. Harrison ◽  
H. J. Landau ◽  
L. A. Shepp

1976 ◽  
Vol 22 (1) ◽  
pp. 54-64 ◽  
Author(s):  
E. S. Barnes ◽  
M. J. Cohn

A fundamental region for the reduction of positive quaternary quadratic forms is exhibited. It is a convex polyhedral cone with twelve edges in the 10-dimensional space of quaternary quadratic forms.


2012 ◽  
Vol 49 (03) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document