scholarly journals Approximations and Optimal Control for State-Dependent Limited Processor Sharing Queues

2022 ◽  
Author(s):  
Varun Gupta ◽  
Jiheng Zhang

The paper studies approximations and control of a processor sharing (PS) server where the service rate depends on the number of jobs occupying the server. The control of such a system is implemented by imposing a limit on the number of jobs that can share the server concurrently, with the rest of the jobs waiting in a first-in-first-out (FIFO) buffer. A desirable control scheme should strike the right balance between efficiency (operating at a high service rate) and parallelism (preventing small jobs from getting stuck behind large ones). We use the framework of heavy-traffic diffusion analysis to devise near optimal control heuristics for such a queueing system. However, although the literature on diffusion control of state-dependent queueing systems begins with a sequence of systems and an exogenously defined drift function, we begin with a finite discrete PS server and propose an axiomatic recipe to explicitly construct a sequence of state-dependent PS servers that then yields a drift function. We establish diffusion approximations and use them to obtain insightful and closed-form approximations for the original system under a static concurrency limit control policy. We extend our study to control policies that dynamically adjust the concurrency limit. We provide two novel numerical algorithms to solve the associated diffusion control problem. Our algorithms can be viewed as “average cost” iteration: The first algorithm uses binary-search on the average cost, while the second faster algorithm uses Newton-Raphson method for root finding. Numerical experiments demonstrate the accuracy of our approximation for choosing optimal or near-optimal static and dynamic concurrency control heuristics.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Liuxin Chen ◽  
Gang Hao ◽  
Huimin Wang

We consider a make-to-stock system with controllable demand rate (by varying product selling price) and adjustable service rate (by outsourcing production). With one outsourcing alternative and a choice of either high or low price, the system decides at any point in time whether to produce or even outsource for additional capacity as well as which price to sell the product at. We show in the paper that the optimal control policy is of dynamic threshold type: all decisions are based on the product inventory position which represents the state of the system; there is a state dependent base stock level to decide on production and a higher level on outsourcing; and there is a state dependent threshold which divides the choice of high and low prices.


1978 ◽  
Vol 10 (3) ◽  
pp. 682-701 ◽  
Author(s):  
Bharat T. Doshi

We consider an M/G/1 queue in which the service rate is subject to control. The control is exercised continuously and is based on the observations of the residual workload process. For both the discounted cost and the average cost criteria we obtain conditions which are sufficient for a stationary policy to be optimal. When the service cost rate and the holding cost rates are non-decreasing and convex it is shown that these sufficient conditions are satisfied by a monotonic policy, thus showing its optimality.


1978 ◽  
Vol 10 (03) ◽  
pp. 682-701 ◽  
Author(s):  
Bharat T. Doshi

We consider an M/G/1 queue in which the service rate is subject to control. The control is exercised continuously and is based on the observations of the residual workload process. For both the discounted cost and the average cost criteria we obtain conditions which are sufficient for a stationary policy to be optimal. When the service cost rate and the holding cost rates are non-decreasing and convex it is shown that these sufficient conditions are satisfied by a monotonic policy, thus showing its optimality.


1992 ◽  
Vol 24 (3) ◽  
pp. 699-726 ◽  
Author(s):  
C. N. Laws

In this paper we investigate dynamic routing in queueing networks. We show that there is a heavy traffic limiting regime in which a network model based on Brownian motion can be used to approximate and solve an optimal control problem for a queueing network with multiple customer types. Under the solution of this approximating problem the network behaves as if the service-stations of the original system are combined to form a single pooled resource. This resource pooling is a result of dynamic routing, it can be achieved by a form of shortest expected delay routing, and we find that dynamic routing can offer substantial improvements in comparison with less responsive routing strategies.


1992 ◽  
Vol 24 (03) ◽  
pp. 699-726 ◽  
Author(s):  
C. N. Laws

In this paper we investigate dynamic routing in queueing networks. We show that there is a heavy traffic limiting regime in which a network model based on Brownian motion can be used to approximate and solve an optimal control problem for a queueing network with multiple customer types. Under the solution of this approximating problem the network behaves as if the service-stations of the original system are combined to form a single pooled resource. This resource pooling is a result of dynamic routing, it can be achieved by a form of shortest expected delay routing, and we find that dynamic routing can offer substantial improvements in comparison with less responsive routing strategies.


Sign in / Sign up

Export Citation Format

Share Document