cost rate
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 93)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 15 (1) ◽  
pp. 12
Author(s):  
Dean Leistikow ◽  
Yi Tang ◽  
Wei Zhang

This paper proposes new dynamic conditional futures hedge ratios and compares their hedging performances along with those of common benchmark hedge ratios across three broad asset classes. Three of the hedge ratios are based on the upward-biased carry cost rate hedge ratio, where each is augmented in a different bias-mitigating way. The carry cost rate hedge ratio augmented with the dynamic conditional correlation between spot and futures price changes generally: (1) provides the highest hedging effectiveness and (2) has a statistically significantly higher hedging effectiveness than the other hedge ratios across assets, sub-periods, and rolling window sizes.


Author(s):  
Jae-Hak Lim ◽  
Dae Kyung Kim ◽  
Dong Ho Park

Due to the increased transactions of second-hand products in the market, the optimization of maintenance strategy for the second-hand product has become very important issue to attract a great attention from many researchers of late. This paper proposes a new post-warranty strategy with a variable self-maintenance period for the second-hand product, assuming that the product is replaced by another one on the first failure following a fixed length of post-warranty self-maintenance period. During the non-renewing warranty period, the product is subject to preventive maintenance periodically at a prorated cost while only minimal repair is implemented at each failure by the dealer. The main goal of this study is to determine an optimal length of post-warranty self-maintenance period which minimizes the expected cost rate per unit time during the product’s life cycle from the user’s perspective. This approach considers not only the periodic preventive maintenance during the warranty period, but also the remaining life distribution of the product after the warranty expires, which is the significant difference of this work from many existing maintenance policies. For this purpose, we formulate the expected length of life cycle and evaluate the expected total cost incurred during the life cycle of the second-had product which is purchased at the age of [Formula: see text] The existence of the optimal self-maintenance period is proved analytically under mild conditions and the proposed maintenance model is compared with an existing model with regard to the expected cost rate. Finally, assuming that the life distribution of the product follows a Weibull distribution, the effect of relevant parameters on the optimal self-maintenance period is analyzed numerically.


2021 ◽  
pp. 1-19
Author(s):  
Aida Farsi ◽  
Marc A. Rosen

Abstract A novel geothermal desalination system is proposed and optimized in terms of maximizing the exergy efficiency and minimizing the total cost rate of the system. The system includes a geothermal steam turbine with a flash chamber, a reverse osmosis unit and a multi-effect distillation system. First, exergy and economic analyses of the system are performed using Engineering Equation Software. Then, an artificial neural network is used to develop a mathematical function linking input design variables and objective functions for this system. Finally, a multi-objective optimization is carried out using a genetic algorithm to determine the optimum solutions. The Utopian method is used to select the favorable solution from the optimal solutions in the Pareto frontier. Also, the distributions of the values of design variables within their allowable ranges are investigated. It is found that the optimum exergy efficiency and total cost rate of the geothermal desalination system are 29.6% and 3410 $/h, respectively. Increasing the seawater salinity and decreasing the intake geothermal water temperature results in an improvement in both exergy efficiency and total cost rate of the system, while variations in the flash pressure and turbine outlet pressure lead to a conflict between the exergy efficiency and total cost rate of the geothermal desalination system over the range of their variations.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8409
Author(s):  
Esmaeil Jadidi ◽  
Mohammad Hasan Khoshgoftar Manesh ◽  
Mostafa Delpisheh ◽  
Viviani Caroline Onishi

Integrated solar-assisted gasification cycles (ISGC) have emerged as a more flexible and environmentally friendly solution for producing power, steam, and other high-valued by-products from low-cost opportunity fuels. In this light, this paper investigates a new ISGC system for converting heavy refineries fuels into power and steam utilities while enhancing energy efficiency and economic and environmental performance indicators. In this approach, a solar energy field and a two-pressure heat recovery steam generator were integrated into the ISGC system to improve overall economic and environmental plant viability. The ISGC system was modelled in MATLAB software, and the results were validated using Thermoflex software. Conventional and advanced energy, exergy, exergoeconomic, and exergoenvironmental (4E) analyses were implemented to assess the main performance parameters and identify potential system improvements. The ISGC system produced 319.92 MW of power by feeding on 15.5 kg/s of heavy refinery fuel, with a thermal efficiency of 50% and exergy efficiency of 54%. The results also revealed an investment cost of $466 million, evaluated at a system cost rate of 446 $/min and an environmental impact rate of 72,796 pts/min. The conventional and advanced 4E analyses unveiled the process economic and environmental feasibilities, particularly for oil-rich countries with high availability of solar resources.


Author(s):  
Xinlong Li ◽  
Yan Ran ◽  
Genbao Zhang

Preventive maintenance is an important means to extend equipment life and improve equipment reliability. Traditional preventive maintenance decision-making is often based on components or the entire system, the granularity is too large and the decision-making is not accurate enough. The meta-action unit is more refined than the component or system, so the maintenance decision-making based on the meta-action unit is more accurate. Therefore, this paper takes the meta-action unit as the research carrier, considers the imperfect preventive maintenance, based on the hybrid hazard rate model, established the imperfect preventive maintenance optimization model of the meta-action unit, and the optimization solution algorithm was given for the maintenance strategy. Finally, through numerical analysis, the validity of the model is verified, and the influence of different maintenance costs on the optimal maintenance strategy and optimal maintenance cost rate is analyzed.


2021 ◽  
Vol 11 (23) ◽  
pp. 11554
Author(s):  
Ali Baghernejad ◽  
Amjad Anvari-Moghaddam

Combined cycle systems have an important role in power generation. In the present study, three different configurations of combined Brayton and Rankine cycle system are studied from the perspective of energy, exergy, exergoeconomic and environmental perspectives. Results indicate that it depends on the preferences and criteria of each decision maker to select the best configuration among the three proposed configurations as the final configuration. For the purpose of parametric analysis, the effect of changing various parameters such as compressor pressure ratio, gas turbine inlet temperature on the output work, exergy efficiency, exergy-economic and environmental parameters is studied. In addition, an attempt is made to optimize the performance of combined cycle systems considering three objective functions of exergy efficiency, total cost rate and exergy unit cost of produced electricity.


Author(s):  
Mohammad Javad Bazregari ◽  
Mahdi Gholinejad ◽  
Yashar Peydayesh ◽  
Nima Norouzi ◽  
Maryam Fani

This research presents a system to use natural gas to meet electricity, freshwater and cooling needs for a residential building in Bandar Abbas. The system includes a gas turbine, absorption chiller and multi-effect desalination (MED) plant. The energy produced in the gas turbine is used to generate electricity, and the excess energy is used to produce cooling and freshwater. Finally, an exergoeconomic evaluation of the system is performed. The effects of ambient temperature on the output power as well as the exergy current have been investigated. The COP of the absorption cycle has been investigated, and the results show that at an operating temperature of 150∘C compared to 90∘C, the efficiency rate increases to 20%. The highest exergoeconomic cost rate is related to absorption chiller, and the lowest is related to heat recovery steam generation. The results show that if the ambient temperature increases, the production capacity decreases. Increasing the fuel flow rate increases the power. Evaluation of two different solutions to reduce the ambient temperature and increase the fuel flow shows that increasing the fuel flow is a better solution, considering the exergy cost of the absorption chiller, which is 10 times higher than that of the gas turbine.


Author(s):  
Akihiro Yamane ◽  
Kodo Ito ◽  
Yoshiyuki Higuchi

Social infrastructures such as roads and bridges are indispensable for our lives. They have to be maintained continuously and such maintenance has become a big issue in Japan. Social infrastructures are maintained under strict restrictions such as decreasing in local finance revenue and scarcity of skilful engineers. Various kinds of factors such as inspection periods, maintenance costs, and degradation levels, are necessary to consider in establishing efficient maintenance plans of social infrastructures. Furthermore, the special circumstances of social infrastructures such as the delay of constructions which is caused by the scarcity of budget, must be discussed for the efficient maintenance plan. For such discussion, the stochastic cost model which contains preventive and corrective maintenances is useful. Although these models have been studied in mechanical and electronic systems, unique characteristics of social infrastructures such as their enormous scale and delays due to maintenance budget restrictions must be considered when such social infrastructure models are discussed. In this paper, we establish maintenance models of infrastructures which some of preventive maintenance must be prolonged. The expected maintenance cost rate is established using the cumulative damage model and optimal policies which minimizes them are considered. Three basic models and their extended models which consider natural disasters are discussed.


2021 ◽  
Vol 13 (23) ◽  
pp. 13187
Author(s):  
Rahmad Syah ◽  
Afshin Davarpanah ◽  
Mahyuddin K. M. Nasution ◽  
Faisal Amri Tanjung ◽  
Meysam Majidi Nezhad ◽  
...  

In this study, an integrated molten carbonate fuel cell (MCFC), thermoelectric generator (TEG), and regenerator energy system has been introduced and evaluated. MCFC generates power and heating load. The exit fuel gases of the MCFC is separated into three sections: the first section is transferred to the TEG to generate more electricity, the next chunk is conducted to a regenerator to boost the productivity of the suggested plant and compensate for the regenerative destructions, and the last section enters the surrounding. Computational simulation and thermodynamic evaluation of the hybrid plant are carried out utilizing MATLAB and HYSYS software, respectively. Furthermore, a thermoeconomic analysis is performed to estimate the total cost of the product and the system cost rate. The offered system is also optimized using multi-criteria genetic algorithm optimization to enhance the exergetic efficiency while reducing the total cost of the product. The power generated by MCFC and TEG is 1247.3 W and 8.37 W, respectively. The result explicates that the provided electricity and provided efficiency of the suggested plant is 1255.67 W and 38%, respectively. Exergy inquiry outcomes betokened that, exergy destruction of the MCFC and TEG is 13,945.9 kW and 262.75 kW, respectively. Furthermore, their exergy efficiency is 68.22% and 97.31%, respectively. The impacts of other parameters like working temperature and pressure, thermal conductance, the configuration of the advantage of the materials, etc., on the thermal and exergetic performance of the suggested system are also evaluated. The optimization outcomes reveal that in the final optimum solution point, the exergetic efficiency and total cost of the product s determined at 70% and 30 USD/GJ.


Author(s):  
Hasan Misaii ◽  
Firoozeh Haghighi ◽  
Mitra Fouladirad

In this paper, the maintenance optimization problem of multi-component system is considered. It is assumed that the exact cause of system failure might be masked. That is, the exact cause of failure is unknown, and we only know that it belongs to a set called mask set. Both opportunistic perfect preventive maintenance (OPPM) and perfect corrective maintenance are considered. Threshold of OPPM and inter-inspection interval are considered as decision parameters which are optimized using long-run cost rate criteria. The applicability of the proposed maintenance policy is investigated using an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document