311 Hepatic Venous Blood Flow Simulation Using the Finite Difference Lattice Boltzmann Method

2011 ◽  
Vol 2011.86 (0) ◽  
pp. _3-11_
Author(s):  
Takashi Yamada ◽  
Michihisa Tsutahara ◽  
Takumi Fukumoto ◽  
Tetsuo Nakai ◽  
Kenichiro Ouchi
Author(s):  
Vahid Abdollahi ◽  
Amir Nejat

A finite difference lattice Boltzmann method (FDLBM) is employed to simulate the compressible inviscid/viscous flows. The robustness of the employed approach is tested for the shock tube or Riemann problem in some distinct cases including strong pressure shock, the stationary contact discontinuity and the weak acoustic wave. The Results are compared with the exact solutions, as well as other classical finite volume CFD techniques (Steger-Warming, Roe and AUSM flux). The validity of the employed LBM approach is studied. This research reveals some of the challenges involved in simulating the compressible flows using FDLBM.


Author(s):  
Shinsuke Tajiri ◽  
Michihisa Tsutahara ◽  
Long Wu

An Improved model of the finite difference lattice Boltzmann method which allows us to consider gas-liquid two component flows with a large density ratio like air-water flows was proposed. Simulations of the two component fluids which have a free interface and a large density ratio were demonstrated. The model which has compressibility of fluid and allows us to consider the pressure waves propagating in water like water hammers was presented. The basic idea is to decrease a density fluctuation by giving a large pressure gradient. The compressibility of liquid was controlled by choosing the bulk modulus. In order to simulate immiscible two fluids, the modulated diffusion scheme proposed by Latva-Kokko et al. was employed. The scheme is able to produce a smooth interface by allowing a certain amount of interface diffusion. The continuum surface force proposed by Brackbill et al. was employed as surface tension. A collapse of liquid column was calculated in order to confirm the relation between the inertia of liquid with a large density and the gravity, and the appropriate result was obtained.


Sign in / Sign up

Export Citation Format

Share Document