scholarly journals Effect of Stretch on Local Burning Velocity of Premixed Turbulent Flames

2007 ◽  
Vol 2 (2) ◽  
pp. 268-280 ◽  
Author(s):  
Masaya NAKAHARA ◽  
Hiroyuki KIDO ◽  
Takamori SHIRASUNA ◽  
Koichi HIRATA
2005 ◽  
Vol 2005.58 (0) ◽  
pp. 145-146
Author(s):  
Masaya NAKAHARA ◽  
Hiroyuki KIDO ◽  
Kenshiro NAKASHIMA ◽  
Hideaki TAKAMOTO ◽  
Koichi HIRATA

2012 ◽  
Vol 2012.50 (0) ◽  
pp. 140301-140302
Author(s):  
Shohei NISHIBE ◽  
Yoshinori MATSUO ◽  
Masaya NAKAHARA ◽  
Fumiaki ABE ◽  
Kenichi TOKUNAGA

Author(s):  
Pratap Sathiah ◽  
Andrei N. Lipatnikov

A typical stationary premixed turbulent flame is the developing flame, as indicated by the growth of mean flame thickness with distance from flame-stabilization point. The goal of this work is to assess the importance of modeling flame development for RANS simulations of confined stationary premixed turbulent flames. For this purpose, submodels for developing turbulent diffusivity and developing turbulent burning velocity, which were early suggested by our group (FSC model) and validated for expanding spherical flames [4], have been incorporated into the so-called Zimont model of premixed turbulent combustion and have been implemented into the CFD package Fluent 6.2. The code has been run to simulate a stationary premixed turbulent flame stabilized behind a triangular bluff body in a rectangular channel using both the original and extended models. Results of these simulations show that the mean temperature and velocity fields in the flame are markedly affected by the development of turbulent diffusivity and burning velocity.


Author(s):  
Masaya Nakahara ◽  
Koichi Murakami ◽  
Jun Hashimoto ◽  
Atsushi Ishihara

This study is performed to investigate directly the local flame properties of turbulent propagating flames at the same weak turbulence condition (u′/SL0 = 1.4), in order to clarify basically the influence of the addition of hydrogen to methane or propane mixtures on its local burning velocity. The mixtures having nearly the same laminar burning velocity with different rates of addition of hydrogen δH are prepared. A two-dimensional sequential laser tomography technique is used to obtain the relationship between the flame shape and the flame displacement. The local flame displacement velocity SF is quantitatively obtained as the key parameters of the turbulent combustion. Additionally, the Markstein number Ma was obtained from outwardly propagating spherical laminar flames, in order to examine the effects of positive stretch and curvature on burning velocity. It was found that the trends of the mean values of measured SF with respect to δH, the total equivalence ratio Φ and fuel types corresponded well its turbulent burning velocity. The trend of the obtained Ma could explain the local burning velocity of turbulent flames only qualitatively. Based on the Ma, the local burning velocity at the part of turbulent flames with positive stretch and curvature, SLt, is estimated quantitatively. As a result, a quantitative relationship between the estimated SLt and the SF at positive stretch and curvature of turbulent flames could be observed for mixtures with increasing the Lewis number.


An experimental study of the influence of laminar burning velocity on the structure and propagation of duct-confined premixed turbulent flames has been carried out. Propane, acetylene and hydrogen were used as fuels to vary the laminar burning velocity in the range from 20 to 280 cm/s. These experiments fully verify the three region model (region 1: u ' < 2 S L , η > δ L ; region 2: u ' ≈ 2 S L , η ≈ δ L to η ≫ δ L ; region 3: u ' > 2 S L , η < δ L ) of turbulent flames proposed earlier by Ballal & Lefebvre. Since a large increase in the laminar burning velocity has a stabilizing influence it is possible to suppress the ‘instability’ of region 1 and the ‘eddy entrainment’ of region 3. The ‘turbulent diffusion’ mechanism then becomes solely dominant, and the flame shows a ‘jet-like’ behaviour. For such a flame (i) both the burning velocity and flame turbulence intensity are independent of scale, (ii) the equations developed by Karlovitz and Ballal for regions of stable combustion accurately predict all the experimental data on turbulent burning velocity and flame turbulence, respectively, and (iii) the laminar burning velocity remains an important parameter of flame propagation even at very high turbulence intensity. Finally the important role of shear-generated turbulence and the ability of the flame either to dampen or to generate additional turbulence has been fully confirmed.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
A. N. Lipatnikov

A method for evaluating burning velocity in premixed turbulent flames stabilized in divergent mean flows is quantitatively validated using numerical approximations of measured axial profiles of the mean combustion progress variable, mean and conditioned axial velocities, and axial turbulent scalar flux, obtained by four research groups from seven different flames each stabilized in an impinging jet. The method is further substantiated by analyzing the combustion progress variable balance equation that is yielded by the extended Zimont model of premixed turbulent combustion. The consistency of the model with the aforementioned experimental data is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document