Torsional effects on the free transverse vibration of circular bar.

1985 ◽  
Vol 51 (465) ◽  
pp. 935-941
Author(s):  
Atsushi HAGITA ◽  
Takahiko KUNO ◽  
Masao MIZUNO
2011 ◽  
Vol 675-677 ◽  
pp. 999-1002 ◽  
Author(s):  
Xiao Cong He

Self-pierce riveting (SPR) technology offers an alternative to resistance spot welding (RSW) for joining sheet materials. It has been found that the SPR technology produced a much stronger joint than the RSW in fatigue test. For efficient design of SPR structures, the knowledge of dynamic characteristics of the SPR beams is essential. In this paper, the free transverse vibration characteristics of single lap-jointed cantilevered SPR beams are investigated in detail. The focus of the analysis is to reveal the influence on the natural frequency and natural frequency ratio of these beams caused by variations in the material properties of sheet materials to be jointed. It is shown that the transverse natural frequencies of single lap jointed cantilevered SPR beams increase significantly as the Young’s modulus of the sheet materials increases, but change slightly corresponding to the change in Poisson’s ratio. It is also found that the material density of the sheets have significant effects on the free transverse vibration characteristics of the beams.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Peng Liu ◽  
Kun Lin ◽  
Hongjun Liu ◽  
Rong Qin

A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.


Sign in / Sign up

Export Citation Format

Share Document