general boundary conditions
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 95)

H-INDEX

43
(FIVE YEARS 9)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7088
Author(s):  
Wenhao Huang ◽  
Kai Xue ◽  
Qiuhong Li

Functionally graded materials (FGMs) structures are increasingly used in engineering due to their superior mechanical and material properties, and the FGMs plate with cutouts is a common structural form, but research on the vibration characteristics of FGMs plate with cutouts is relatively limited. In this paper, the three-dimensional exact solution for the vibration analysis of FGMs rectangular plate with circular cutouts subjected to general boundary conditions is presented based on the three-dimensional elasticity theory. The displacement field functions are expressed as standard cosine Fourier series plus auxiliary cosine series terms satisfying the boundary conditions in the global coordinate system. The plate with circular cutout is discretized into four curve quadrilateral sub-domains using the p-version method, and then the blending function method is applied to map the closed quadrilateral region to the computational space. The characteristic equation is obtained based on the Lagrangian energy principle and Rayleigh–Ritz method. The efficiency and reliability of proposed method are verified by comparing the present results with those available in the literature and FEM methods. Finally, a parametric study is investigated including the cutout sizes, the cutout positions, and the cutout numbers from the free vibration characteristic analysis and the harmonic analysis. The results can serve as benchmark data for other research on the vibration of FGMs plates with cutouts.


Author(s):  
J. Lu ◽  
X. Hua ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
...  

The porous material is an emerging lightweight material, which is able to reduce structural weight and also keeps the superiority of the structure. Therefore, this work is devoted to the investigation of the functionally graded porous (FGP) annular and circular plates with general boundary conditions. The unified modeling method is proposed by combining the first-order shear deformation theory, the virtual spring technology, the multi-segment partition method, and the semi-analysis Rayleigh–Ritz approach. Afterwards, the convergency and correctness of the proposed method are verified, respectively. The frequency parameters, modal shapes, and forced vibration responses are uniformly calculated based on the proposed method. Finally, the dynamic analyses of the FGP annular and circular plates with different parameters, such as the porosity distribution types, porosity ratios, boundary condition types, geometry parameters, and load types, are conducted in detail. It is found that the reasonable porous design is able to keep the dynamic stability of the structure under different parameter variations.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
F. Capone

Abstract We address the problem of consistent Campiglia-Laddha superrotations in d > 4 by solving Bondi-Sachs gauge vacuum Einstein equations at the non-linear level with the most general boundary conditions preserving the null nature of infinity. We discuss how to generalise the boundary structure to make the configuration space compatible with supertanslation-like and superrotation-like transformations. One possibility requires the time-independent boundary metric on the cuts of "Image missing" to be non-Einstein, while the other sticks to Einstein but time-dependent metrics. Both are novel features with respect to the four dimensional case, where time-dependence of the two-dimensional cross-sectional metric is not required and the Einstein condition is trivially satisfied. Other cases are also discussed. These conditions imply that the configuration spaces are not asymptotically flat in the standard sense. We discuss the implications on the construction of the phase space and the relationship with soft scattering theorems. We show that in even spacetime dimensions, the initial data compatible with such asymptotic symmetries produce maximally polyhomogeneous expansions of the metric and we advance a potential interpretation of this structure in terms of AdS/CFT and realizations of Ricci-flat holography.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 226
Author(s):  
Efthimios Providas ◽  
Stefanos Zaoutsos ◽  
Ioannis Faraslis

This paper deals with the solution of boundary value problems for ordinary differential equations with general boundary conditions. We obtain closed-form solutions in a symbolic form of problems with the general n-th order differential operator, as well as the composition of linear operators. The method is based on the theory of the extensions of linear operators in Banach spaces.


2021 ◽  
Vol 263 (4) ◽  
pp. 2501-2509
Author(s):  
Zhengmin Hu ◽  
Kai Zhou ◽  
Yong Chen

In this paper, a semi-analytical model is proposed to deal with the vibroacoustic problems of laminated composite plates with surfaced-boned piezoelectric patches and subjected to general boundary condition using the modified Fourier series method. Based on Kirchhoff plate theory, the dynamic equation of the laminated composite plate is derived using Hamilton's principle. In order to satisfy general boundary conditions, the displacement solution of the plate is expressed in the form of two-dimensional Fourier series and serval auxiliary functions. The acoustic response of the laminated composite plate due to a harmonic concentrated force is obtained with the Rayleigh integral. Besides, the mass and stiffness contribution of the piezoelectric patch are taken into consideration in the present study. Through enough convergent studies and comparative studies, the convergence, accuracy and universality of the proposed method are validated. The developed semi-analytical model can be used for efficient and accurate analysis and design of laminated composite plates equipped with shunted piezoelectric patches. Finally, the effects of the resistor and inductor shunt damping circuits on the vibration and acoustic response is discussed.


Sign in / Sign up

Export Citation Format

Share Document