vibration characteristics
Recently Published Documents





2022 ◽  
Vol 169 ◽  
pp. 108747
Tianrui Yang ◽  
Hui Ma ◽  
Zhaoye Qin ◽  
Hong Guan ◽  
Qian Xiong

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 143
Hao Wang ◽  
Li Zhang ◽  
Youliang Sun ◽  
Guan Wang ◽  
Liang Zou

According to the vibration characteristics of converter transformers, considering the Maxwell equation, magnetostrictive effect, Lorentz force and structural mechanics, the similarity criterion suitable for converter transformers is deduced in this paper. Using the finite element simulation platform, the multi physical field coupling model of converter transformers is constructed, and the scale coefficient is 0.1. The magnetic flux density distribution, stress distribution, shape variable and vibration characteristics of the model before and after the similarity are analyzed. The results show that the variation law of the model before and after the similarity conforms to the similarity criterion, and the correctness of the similarity criterion is verified. The converter transformer vibration similarity model and its verification method can effectively reduce the unnecessary waste of resources before the preparation of converter transformers and have important reference value for the analysis and improvement of converter transformer vibration characteristics.

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Shiqin Ai ◽  
Chao Sun ◽  
Yuechan Liu ◽  
Yuelin Li

The reliability of the heat exchanger tube bundle not only affects the economic efficiency of production but also relates to the normal development of production safety and health. To study the flow-induced vibration of tube bundles, a three-dimensional finite element model of heat exchange tubes and watersheds inside and outside the tubes was established to explore the flow-induced vibration characteristics of tube bundles and analyze the natural frequencies of single-span and multispan heat exchange tubes. Considering the randomness of the effective support between the tube bundle and the support plate of the heat exchanger, the natural frequency and vibration mode of the four-span tube with failure of the tube bundle support are analyzed. On this basis, the vibration caused by the two-way coupling flow between tube and tube outflow is calculated. Finally, the flow-induced vibration characteristics of the five-tube bundle with two different pitch-diameter ratios are analyzed. The calculation results show that the error between the calculated natural frequencies and the theoretical values is less than 3%, and within the allowable error range, the natural frequencies of the same order decrease with the increase of the number of support failures. The vibration frequencies of single-span and multispan tube bundles are consistent with the lift and drag frequencies, the vibration displacement curves show typical Strouhal modes, and the amplitude increases with the increase of fluid velocity. Vibration displacement curves of symmetrical spans of multispan tube bundles are similar in shape and amplitude. With the increase of tube bundle spacing, the vibration characteristics become more obvious.

2022 ◽  
P. M. Anilkumar ◽  
B. N. Rao ◽  
A. Haldar ◽  
Sven Scheffler ◽  
Marlene Wolniak ◽  

Sign in / Sign up

Export Citation Format

Share Document