scholarly journals Enhancing the Light Harvesting Efficiency, Open Circuit Voltage And Stability of Molybdenum Doped (Zno)6 Nanocluster in Dye-Sensitized Solar Cells: A DFT Study

2018 ◽  
Vol 34 (5) ◽  
pp. 2292-2304
Author(s):  
S. Dheivamalar ◽  
K. Bansura banu

In this study, the electronic and structural properties of drum structured Mo-doped Zn6O6 (MoZn5O6) cluster as the π conjugated bridging in the dye-sensitized solar cells (DSSC) were compared with its pristine form by density functional theory (DFT) calculations under Gaussian 09 Program. The frontier molecular orbital study was explored to determine the charge transport characteristics of donor-acceptor moieties over the entire visible range and the electron injection from the valence band (LUMO) orbital to the conduction band (HOMO) orbital of MoZn5O6. The energy gap (Eg), binding energy (EB), global reactivity descriptors, thermodynamic parameters and the dipole moment were also calculated for MoZn5O6 and compared with Zn6O6. The density of states (DOS) of MoZn5O6 material was investigated to demonstrate the importance of d orbital of Mo atom in hybridization. To examine the charge distribution, Mulliken atomic charge distribution and molecular electrostatic potential (MEP) were analyzed. A spectroscopic study was included for the better perception of the interaction of Mo with Zn6O6 cluster. The increased value of the first-order hyperpolarizability of MoZn5O6 from its pure clustermanifests the MoZn5O6 is a better candidate with the superior nonlinear optical property. The analysis of UV-Vis spectra through the time-dependent density functional theory (TD-DFT) discovers that the MoZn5O6 has larger light harvesting efficiency (LHE) which influences the higher photon to current conversion efficiency. As a result, the valence band (LUMO) of MoZn5O6 is intense than the conduction band (HOMO) of MoZn5O6 making an increase in the open circuit voltage (VOC) and hence it confirms that the MoZn5O6 material can be a used in photovoltaic applications.

RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19804-19810 ◽  
Author(s):  
Xingyi Jin ◽  
Dongyuan Li ◽  
Libo Sun ◽  
Cheng-Long Wang ◽  
Fu-Quan Bai

Using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, three porphyrin dyes with different acceptors, such as carboxylic acid, cyanoacrylic acid, and 2-cyano-N-hydroxyacrylamide, have been designed.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad

Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD) and IR dyes (covering IR region; TIRBD1-TIRBD3) were performed using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.


Sign in / Sign up

Export Citation Format

Share Document