Cement Geochemistry of Photozoan Carbonate Strata (Upper Carboniferous-Lower Permian), Finmark Carbonate Platform, Barents Sea: Erratum

2003 ◽  
Vol 73 (2) ◽  
pp. 336-336
Author(s):  
S.N. Ehrenberg ◽  
N.A.H. Pickard ◽  
T.A. Svana ◽  
N.H. Oxtoby
2000 ◽  
Vol 80 (2) ◽  
pp. 129-161 ◽  
Author(s):  
Stephen N. Ehrenberg ◽  
Neil A. H. Pickard ◽  
Tore A. SvåNå ◽  
Inger Nilsson ◽  
Vladimir I. Davydov

1989 ◽  
Vol 143 ◽  
pp. 21-45
Author(s):  
L Stemmerik ◽  
E Håkansson

A lithostratigraphic scheme is erected for the Lower Carboniferous to Triassic sediments of the Wandel Sea Basin, from Lockwood Ø in the west to Holm Land in the east. The scheme is based on the subdivision into the Upper Carboniferous - Lower Permian Mallemuk Mountain Group and the Upper Permian - Triassic Trolle Land Group. In addition the Upper Carboniferous Sortebakker Formation and the Upper Permian Kap Kraka Formation are defined. Three formations and four members are included in the Mallemuk Mountain Group. Lithostratigraphic units include: Kap Jungersen Formation (new) composed of interbedded limestones, sandstones and shales with minor gypsum - early Moscovian; Foldedal Formation composed of interbedded limestones and sandstones -late Moseovian to late Gzhelian; Kim Fjelde Formation composed of well bedded Iimestones - late Gzhelian to Kungurian. The Trolle Land Group includes three formations: Midnatfjeld Formation composed of dark shales, sandstones and limestones - Late Permian; Parish Bjerg Formation composed of a basal conglomeratic sandstone overlain by shales and sandstones - ?Early Triassic (Scythian); Dunken Formation composed of dark shales and sandstones - Triassic (Scythian-Anisian). The Sortebakker Formation (new) is composed of interbedded sandstones, shales and minor coal of floodplain origin. The age is Early Carboniferous. The Kap Kraka Formation (new) includes poorly known hematitic sandstones, conglomerates and shales of Late Permian age.


2020 ◽  
Vol 51 ◽  
pp. 1-11
Author(s):  
Kristýna Hrdličková ◽  
Altanbaatar Battushig ◽  
Pavel Hanžl ◽  
Alice Zavřelová ◽  
Jitka Míková

A new occurrence of Permian volcanic and volcaniclastic rocks in the Mongolian Altai south of the Main Mongolian Lineament was described between soums of Tugrug and Tseel in Gobi-Altai aimag. Studied vitrophyric pyroxene basalt lies in a layer of agglomerate and amygdaloidal lavas, which is a part of NE–SW trending subvertical sequence of varicolored siltstones and volcaniclastic rocks in the Tsengel River valley. This high-Mg basalt is enriched in large ion lithophile elements, Pb and Sr and depleted in Nb and Ta. LA-ICP-MS dating on 44 spots reveals several concordia clusters. The whole rock geochemistry of sample fits volcanic arc characteristic in the geotectonic discrimination diagrams. Dominant zircon data yield Upper Carboniferous and Permian magmatic ages 304.4 ± 2.3 and 288.6 ± 1.9 Ma. Two smaller clusters of Upper Devonian (376 ± 4.7 Ma) to Lower Carboniferous ages (351.9 ± 3.5 Ma) indicate probably contamination of ascending magmatic material. Youngest Triassic age found in three morphologically differing grains reflects probably lead loss. Described high-Mg basalt lava represents sub-aerial volcanism in volcanic arc environment developed over the N dipping subduction zone in the southwestern Mongolia in the time span from Uppermost Carboniferous to Permian during terminal stage of its activity.


2016 ◽  
Vol 64 ◽  
pp. 69-76
Author(s):  
Jesper Milàn ◽  
Hendrik Klein ◽  
Sebastian Voigt ◽  
Lars Stemmerik

A single slab with Late Palaeozoic tetrapod footprints from East Greenland has been housed at the Natural History Museum of Denmark for decades without scientific notice. The specimen comes from the Mesters Vig Formation of northern Scoresby Land in East Greenland and contains a monospecific assemblage of tetrapod footprints that we assign to Limnopus Marsh 1894. As there is no significant morphological difference from other records of this ichnogenus from North America, Europe and North Africa, the described tetrapod footprints can be referred to eryopoid temnospondyl trackmakers. Limnopus is well-known from Upper Carboniferous and Lower Permian continental deposits of palaeoequatorial Pangea. Identification of Limnopus tracks is in agreement with the supposed Late Carboniferous age of the Mesters Vig Formation and thereby also the first evidence of Carboniferous tetrapods from Greenland.


Sign in / Sign up

Export Citation Format

Share Document