scholarly journals Dispersive liquid-liquid microextraction for the preconcentration and spectrophotometric determination of copper(II) in blood serum sample using sodium diethyldithiocarbamate as the complexing agent

2015 ◽  
Vol 3 (6) ◽  
pp. 1111-1121 ◽  
Author(s):  
Reza Emamali Sabzi ◽  
Naimeh Mohseni ◽  
Morteza Bahram ◽  
Mahmoud Rezazadeh Bari
RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 65321-65327 ◽  
Author(s):  
Chunlei Fan ◽  
Shengxu Luo ◽  
Rong Liu

BTF is exists with spirolactone species with adding Cu2+, which leads to the absorbance intensity is decreased gradually and the decrease of the absorbance value is linear for Cu2+.


2014 ◽  
Vol 11 (1) ◽  
pp. 147-157
Author(s):  
Baghdad Science Journal

The new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu2+ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pHex=9), optimum concentration was 40?g/5mLCu2+ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu2+: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and distribution ration (D). Thermodynamically found the reaction was Endothermic reaction, with ?Hex= 0.0131 KJ.mole-1,?Gex=-54.20 KJ.mole-1 ,?Sex= 167.84 J.mole-1.Beer’s law was obeyed over the concentration 1-30?g/5mL, and ?=922.90 Lmol-1.cm-1,with detection limit 1.7×10-5and Sandell’s sensitivity 6.8× 10-7 gcm-2.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Reyhaneh Rahnama ◽  
Elaheh Shafiei ◽  
Mohammad Reza Jamali

We report a simple and sensitive microextraction system for the preconcentration and determination of Cu (II) by flame atomic absorption spectrometry (FAAS). Dispersive liquid-liquid microextraction is a modified solvent extraction method and its acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the proposed approach, 1,5-diphenyl carbazide (DPC) was used as a copper ion selective complexing agent. Several variables such as the extraction and dispersive solvent type and volume, pH of sample solution, DPC concentration, extraction time, and ionic strength were studied and optimized for a quantitative preconcentration and determination of copper (II) and at the optimized conditions: 60 μL, 0.5 mL, and 5 mL of extraction solvent (chloroform), disperser solvent (ethanol), and sample volume, respectively, a linear calibration graph was obtained over the concentration range of 10–200 μg L−1for Cu (II) withR2= 0.9966. The limit of detection (3Sb/m), and preconcentration factor are 2 μg L−1and 25, respectively. The relative standard deviation (n=10) at 100 μg L−1of Cu (II) is 2.5%. The applicability of the developed technique was evaluated by application to spiked environmental water samples.


2013 ◽  
Vol 96 (2) ◽  
pp. 441-446 ◽  
Author(s):  
Mohammad Mirzaei ◽  
Mansoureh Behzadi

Abstract A simple and rapid dispersive liquid–liquid microextraction based on solidification of floating organic drop method prior to flame atomic absorption spectrometry was developed for preconcentration and determination of copper. In this technique, simultaneous complex formation and extraction was performed with rapid injection of a mixture containing ethanol, 1-undecanol, and 1-(2-pyridylazo)-2-naphthol into a water sample spiked with Cu(II). After centrifugation, the test tube was cooled in an ice bath, and solidified extract transferred into a conical vial. Finally, it was dissolved into ethanol and copper concentration was determined. Some effective parameters of extraction and complex formation, such as extraction and disperser solvent type and volume, pH, concentration of the chelating agent, salt effect, and extraction time, were optimized. Under the optimum conditions, the calibration graph was linear in the range of 0.50 ng/mL to 0.30 μg/mL, with an LOD of 0.16 ng/mL. The RSD for 10 replicate measurements of 50.0 ng/mL of copper was ±1.4%. Two certified reference materials were analyzed, and the determined values were in good agreement with the certified values.


Sign in / Sign up

Export Citation Format

Share Document