Hochschild cohomology for von Neumann algebras with Cartan subalgebras

1998 ◽  
Vol 120 (5) ◽  
pp. 1043-1057 ◽  
Author(s):  
Allan M. Sinclair ◽  
Roger R. Smith
Author(s):  
Colin E. Sutherland

AbstractWe analyse the structure of a regular extension ℳ ⋊ γ, υQ of a von Neumann algebra ℳ by an action (modulo inner automorphisms) γ of a discrete group Q, and a nonabelian 2-cycle υ for γ, under the assumption that the “action” γ of Q is cocycle conjugate to an “action”, α which leaves globally invariant a cartan subalgebra of ℳ. we show that ℳ ⋊ γ, υQ is isomorphic with the algebra of the left regular projective representation of a certain discrete, non-principal groupoid ℜ V Q determined by the action of Q on the given cartan subalgebrs, where ℜ is the Takesaki relation associated to the pair (ℳ, ) we apply this description to give a decomposition of the regular representation of a group G into irreducibles, where G is a split extension of a type I group K by an abelian group Q, and work out the details of the author's earlier abstract plancherel theorem in the case when K is abelian.


2016 ◽  
Vol 152 (12) ◽  
pp. 2461-2492 ◽  
Author(s):  
Cyril Houdayer ◽  
Yoshimichi Ueda

Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$, we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.


2013 ◽  
Vol 150 (1) ◽  
pp. 143-174 ◽  
Author(s):  
Rémi Boutonnet ◽  
Cyril Houdayer ◽  
Sven Raum

AbstractWe investigate Cartan subalgebras in nontracial amalgamated free product von Neumann algebras ${\mathop{M{}_{1} \ast }\nolimits}_{B} {M}_{2} $ over an amenable von Neumann subalgebra $B$. First, we settle the problem of the absence of Cartan subalgebra in arbitrary free product von Neumann algebras. Namely, we show that any nonamenable free product von Neumann algebra $({M}_{1} , {\varphi }_{1} )\ast ({M}_{2} , {\varphi }_{2} )$ with respect to faithful normal states has no Cartan subalgebra. This generalizes the tracial case that was established by A. Ioana [Cartan subalgebras of amalgamated free product ${\mathrm{II} }_{1} $factors, arXiv:1207.0054]. Next, we prove that any countable nonsingular ergodic equivalence relation $ \mathcal{R} $ defined on a standard measure space and which splits as the free product $ \mathcal{R} = { \mathcal{R} }_{1} \ast { \mathcal{R} }_{2} $ of recurrent subequivalence relations gives rise to a nonamenable factor $\mathrm{L} ( \mathcal{R} )$ with a unique Cartan subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for a class of group measure space factors ${\mathrm{L} }^{\infty } (X)\rtimes \Gamma $ arising from nonsingular free ergodic actions $\Gamma \curvearrowright (X, \mu )$ on standard measure spaces of amalgamated groups $\Gamma = {\mathop{\Gamma {}_{1} \ast }\nolimits}_{\Sigma } {\Gamma }_{2} $ over a finite subgroup $\Sigma $.


2014 ◽  
Vol 115 (2) ◽  
pp. 206 ◽  
Author(s):  
Richard V. Kadison ◽  
Zhe Liu

A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we study derivations of Murray-von Neumann algebras and their properties. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a von Neumann algebra of type ${\rm II}_1$ into that von Neumann algebra is 0. This result is an extension, in two ways, of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: the algebra may be non-commutative and contain unbounded elements. In another sense, as we indicate in the introduction, all the derivation results including ours extend what Singer's result says, that the derivation is the 0-mapping, numerically in our main theorem and cohomologically in our theorem on extended derivations. The cohomology in this case is the Hochschild cohomology for associative algebras.


2020 ◽  
pp. 1-26
Author(s):  
Jean Roydor

We initiate the study of perturbation of von Neumann algebras relatively to the Banach–Mazur distance. We first prove that the type decomposition is continuous, i.e. if two von Neumann algebras are close, then their respective summands of each type are close. We then prove that, under some vanishing conditions on its Hochschild cohomology groups, a von Neumann algebra is Banach–Mazur stable, i.e. any von Neumann algebra which is close enough is actually Jordan ∗-isomorphic. These vanishing conditions are possibly empty.


Sign in / Sign up

Export Citation Format

Share Document