scholarly journals Cartan subalgebras of regular extensions of von Neumann algebras

Author(s):  
Colin E. Sutherland

AbstractWe analyse the structure of a regular extension ℳ ⋊ γ, υQ of a von Neumann algebra ℳ by an action (modulo inner automorphisms) γ of a discrete group Q, and a nonabelian 2-cycle υ for γ, under the assumption that the “action” γ of Q is cocycle conjugate to an “action”, α which leaves globally invariant a cartan subalgebra of ℳ. we show that ℳ ⋊ γ, υQ is isomorphic with the algebra of the left regular projective representation of a certain discrete, non-principal groupoid ℜ V Q determined by the action of Q on the given cartan subalgebrs, where ℜ is the Takesaki relation associated to the pair (ℳ, ) we apply this description to give a decomposition of the regular representation of a group G into irreducibles, where G is a split extension of a type I group K by an abelian group Q, and work out the details of the author's earlier abstract plancherel theorem in the case when K is abelian.

2018 ◽  
Vol 14 (1) ◽  
pp. 7596-7614
Author(s):  
Julien Esse Atto ◽  
Victor Kofi Assiamoua

Let G be a locally compact group equipped with a normalized Haar measure , A(G) the Fourier algebraof G and V N(G) the von Neumann algebra generated by the left regular representation of G. In this paper, we introduce the space V N(G;A) associated with the Fourier algebra A(G;A) for vector-valued functions on G, where A is a H-algebra. Some basic properties are discussed in the category of Banach space, and alsoin the category of operator space.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


Author(s):  
Donald I. Cartwright ◽  
Wojciech MŁotkowski

AbstractLet Δ be a thick building of type Ã2, and let be its set of vertices. We study a commutative algebra of ‘averaging’ operators acting on the space of complex valued functions on . This algebra may be identified with a space of ‘biradial functions’ on , or with a convolution algebra of bi-K-invariant functions on G, if G is a sufficiently large group of ‘type-rotating’ automorphisms of Δ, and K is the subgroup of G fixing a given vertex. We describe the multiplicative functionals on and the corresponding spherical functions. We consider the C*-algebra induced by on l2, find its spectrum Σ, prove positive definiteness of a kernel kz for each z ∈ Σ, find explicity the spherical Plancherel formula for any group G of type rotating automorphisms, and discuss the irreducibility of the unitary representations appearing therein. For the class of buildings ΔJ arising from the groups ΓJ introduced in [2], this involves proving that the weak closure of is maximal abelian in the von Neumann algebra generated by the left regular representation of ΓJ.


2016 ◽  
Vol 152 (12) ◽  
pp. 2461-2492 ◽  
Author(s):  
Cyril Houdayer ◽  
Yoshimichi Ueda

Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$, we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.


2013 ◽  
Vol 150 (1) ◽  
pp. 143-174 ◽  
Author(s):  
Rémi Boutonnet ◽  
Cyril Houdayer ◽  
Sven Raum

AbstractWe investigate Cartan subalgebras in nontracial amalgamated free product von Neumann algebras ${\mathop{M{}_{1} \ast }\nolimits}_{B} {M}_{2} $ over an amenable von Neumann subalgebra $B$. First, we settle the problem of the absence of Cartan subalgebra in arbitrary free product von Neumann algebras. Namely, we show that any nonamenable free product von Neumann algebra $({M}_{1} , {\varphi }_{1} )\ast ({M}_{2} , {\varphi }_{2} )$ with respect to faithful normal states has no Cartan subalgebra. This generalizes the tracial case that was established by A. Ioana [Cartan subalgebras of amalgamated free product ${\mathrm{II} }_{1} $factors, arXiv:1207.0054]. Next, we prove that any countable nonsingular ergodic equivalence relation $ \mathcal{R} $ defined on a standard measure space and which splits as the free product $ \mathcal{R} = { \mathcal{R} }_{1} \ast { \mathcal{R} }_{2} $ of recurrent subequivalence relations gives rise to a nonamenable factor $\mathrm{L} ( \mathcal{R} )$ with a unique Cartan subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for a class of group measure space factors ${\mathrm{L} }^{\infty } (X)\rtimes \Gamma $ arising from nonsingular free ergodic actions $\Gamma \curvearrowright (X, \mu )$ on standard measure spaces of amalgamated groups $\Gamma = {\mathop{\Gamma {}_{1} \ast }\nolimits}_{\Sigma } {\Gamma }_{2} $ over a finite subgroup $\Sigma $.


Author(s):  
Rémi Boutonnet ◽  
Cyril Houdayer

AbstractWe show that stationary characters on irreducible lattices $\Gamma < G$ Γ < G of higher-rank connected semisimple Lie groups are conjugation invariant, that is, they are genuine characters. This result has several applications in representation theory, operator algebras, ergodic theory and topological dynamics. In particular, we show that for any such irreducible lattice $\Gamma < G$ Γ < G , the left regular representation $\lambda _{\Gamma }$ λ Γ is weakly contained in any weakly mixing representation $\pi $ π . We prove that for any such irreducible lattice $\Gamma < G$ Γ < G , any Uniformly Recurrent Subgroup (URS) of $\Gamma $ Γ is finite, answering a question of Glasner–Weiss. We also obtain a new proof of Peterson’s character rigidity result for irreducible lattices $\Gamma < G$ Γ < G . The main novelty of our paper is a structure theorem for stationary actions of lattices on von Neumann algebras.


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1971 ◽  
Vol 23 (4) ◽  
pp. 598-607 ◽  
Author(s):  
Ole A. Nielsen

The fact that any von Neumann algebra on a separable Hilbert space has an essentially unique direct integral decomposition into factors means that there is a global as well as a local aspect to any partial classification of von Neumann algebras. More precisely, suppose that J is a statement about von Neumann algebras which is either true or false for any given von Neumann algebra. Then a von Neumann algebra is said to satisfy J globally if it satisfies J, and to satsify J locally if almost all the factors appearing in some (and hence in any) central decomposition of it satisfy J . In a recent paper [3], H. Araki and E. J. Woods introduced the notion of the asymptotic ratio set of a factor, and by means of this they made remarkable progress in the classification of factors.


Sign in / Sign up

Export Citation Format

Share Document