On-chip Generation of Superimposed Optical Vortices with Tunable Orbital Angular Momentum

Author(s):  
Yu Wang ◽  
Xue Feng ◽  
Yidong Huang
Nanoscale ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 2227-2233 ◽  
Author(s):  
Shengtao Mei ◽  
Kun Huang ◽  
Hong Liu ◽  
Fei Qin ◽  
Muhammad Q. Mehmood ◽  
...  

The orbital angular momentum (OAM) of light can be taken as an independent and orthogonal degree of freedom for multiplexing in an optical communication system, potentially improving the system capacity to hundreds of Tbits per second.


2014 ◽  
Author(s):  
Ryan P. Scott ◽  
Roberto Proietti ◽  
Binbin Guan ◽  
S. J. Yoo

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhifeng Zhang ◽  
Haoqi Zhao ◽  
Danilo Gomes Pires ◽  
Xingdu Qiao ◽  
Zihe Gao ◽  
...  

Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.


2009 ◽  
Vol 94 (23) ◽  
pp. 231104 ◽  
Author(s):  
Cheng-Shan Guo ◽  
Shu-Juan Yue ◽  
Gong-Xing Wei

Sign in / Sign up

Export Citation Format

Share Document