degree of freedom
Recently Published Documents


TOTAL DOCUMENTS

8764
(FIVE YEARS 1489)

H-INDEX

87
(FIVE YEARS 11)

Author(s):  
Hussein Mohammed Ali ◽  
Yasir Hashim ◽  
Ghadah Alaadden Al-Sakkal

<p><span>This study presents the model, design, and construction of the Arduino based robotic arm, which functions across a distance as it is controlled through a mobile application. A six degree of freedom robotic arm has been designed and implemented for the purpose of this research. The design controlled by the Arduino platform receives orders from the user’s mobile application through wireless controlling signals, that is Bluetooth. The arm is made up of five rotary joints and an end effector, where rotary motion is provided by the servomotor. Each link has been first designed using solid works and then printed by 3D printer. The assembly of the parts of the robot and the motor’s mechanical shapes produce the final prototype of the arm. The Arduino has been programmed to provide rotation to each corresponding servo motor to the sliders in the designed mobile application for usage from distance.</span></p>


2022 ◽  
Vol 169 ◽  
pp. 104650
Author(s):  
Fufu Yang ◽  
Miao Zhang ◽  
Jiayao Ma ◽  
Zhong You ◽  
Ying Yu ◽  
...  

2022 ◽  
Vol 73 ◽  
pp. 102257
Author(s):  
Junzhe Lin ◽  
Congcong Ye ◽  
Jixiang Yang ◽  
Huan Zhao ◽  
Han Ding ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 839
Author(s):  
Wangdo Kim ◽  
Emir A. Vela

The first peak of the external knee abduction moment (KAM) is often used as a surrogate measure of the medial compartment loading and has been correlated with pain and progression of knee osteoarthritis (OA). As a result, reducing the KAM is often the target of conservative interventions. OA should be considered as a “Whole Person” disease, including ecological psychosocial aspects. Scientists have developed gait alteration strategies to reduce the KAM. They attempted to force into a new position any particular part without reference to the pattern of the whole. We propose an alternative approach: in the vicinity of a special configuration of the knee, some or all of the components of the knee become overloaded. This study has shown that when six lines $1′,$2′,$3′,$4′,$5′,$6′ are so situated that forces acting along them equilibrate when applied to one degree of freedom, 1° F knee, a certain determinant vanishes. We wish to define the six lines as the knee complex in involution by virtue of some constraint upon the knee.


Author(s):  
Jiuhui Wu ◽  
Shaokun Yang

Abstract In this paper, a novel kind of anti-gravity technology by non-positive equivalent mass of aircraft is presented to try to reveal UFO flying secrets. Starting with a two-degree-of-freedom system, it is found that the system could produce an infinite acceleration under the condition of zero dynamic equivalent mass[1], and also provide a movement opposite to the direction of the external force under the negative equivalent mass[2]. These two cases with non-positive equivalent mass[3] could both be regarded as a novel kind of anti-gravity technology[4,5], which is also verified by a designed dynamic simulation experiment. For any aircraft that can be regarded as a multi-degree-of-freedom system driven by engine or other external forces[6], the non-positive equivalent mass could be designed out once the external input including gravity and engine exciting forces is known[7]. Thus the anti-gravity technology for any aircraft could be realized, which could also be extended to matters related to flight, such as space ships, missiles, airplanes, etc[8].


Author(s):  
Guobiao Hu ◽  
Chunbo Lan ◽  
Junrui Liang ◽  
Lihua Tang ◽  
Liya Zhao

This paper presents a study of a two-degree-of-freedom (2DOF) piezoelectric energy harvester (PEH) under concurrent aeroelastic and base excitation. The governing equations of the theoretical model under the combined excitation are developed and solved analytically using the harmonic balance method. Based on the electro-mechanical analogies, an equivalent circuit model is established. The energy harvesting performance of the 2DOF PEH under different wind speeds but the same base excitation is investigated. Voltage amplitudes of various response components with different frequencies are predicted by the analytical method and verified by the circuit simulation. The root-mean-square (RMS) voltage is used to measure the actual performance of the 2DOF PEH. Around the resonance state, the 2DOF PEH has been found to produce a larger voltage output than the conventional SDOF PEH. Moreover, several interesting phenomena, such as the quasi-periodic oscillation and the peak-to-valley transition, have been observed in the circuit simulation and explained by the analytical solution. The developed methodology in this paper can be easily adapted to analyze other similar types of multiple-degree-of-freedom (MDOF) PEHs under concurrent aeroelastic and base excitation.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Myung-Joon Lee ◽  
Il-Kwon Oh

AbstractValley degree of freedom, associated with the valley topological phase, has propelled the advancement of the elastic waveguide by offering immunity to backscattering against bending and weak perturbations. Despite many attempts to manipulate the wave path and working frequency of the waveguide, internal characteristic of an elastic wave such as rich polarization has not yet been utilized with valley topological phases. Here, we introduce the rich polarization into the valley degree of freedom, to achieve topologically protected in-plane and out-of-plane mode separation of an elastic wave. Accidental degeneracy proves its real worth of decoupling the in-plane and out-of-plane polarized valley Hall phases. We further demonstrate independent and simultaneous control of in-plane and out-of-plane waves, with intact topological protection. The presenting procedure for designing the topologically protected wave separation based on accidental degeneracy will widen the valley topological physics in view of both generation mechanism and application areas.


Sign in / Sign up

Export Citation Format

Share Document