Analytical inversions in remote sensing of particle size distributions 4:Comparison of Fymat and Box-McKellar solutions in the anomalous diffraction approximation

1979 ◽  
Vol 18 (21) ◽  
pp. 3595 ◽  
Author(s):  
A. L. Fymat ◽  
C. B. Smith
2011 ◽  
Vol 68 (6) ◽  
pp. 1162-1177 ◽  
Author(s):  
Yang Zhao ◽  
Gerald G. Mace ◽  
Jennifer M. Comstock

Abstract Data collected in midlatitude cirrus clouds by instruments on jet aircraft typically show particle size distributions that have distinct distribution modes in both the 10–30-μm maximum dimension (D) size range and the 200–300-μm D size range or larger. A literal interpretation of the small D mode in these datasets suggests that total concentrations Nt in midlatitude cirrus are, on average, well in excess of 1 cm−3 whereas more conventional analyses of in situ data and cloud process model results suggest Nt values a factor of 10 less. Given this wide discrepancy, questions have been raised regarding the influence of data artifacts caused by the shattering of large crystals on aircraft and probe surfaces. This inconsistency and the general nature of the cirrus particle size distribution are examined using a ground-based remote sensing dataset. An algorithm using millimeter-wavelength radar Doppler moments and Raman lidar-derived extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. This algorithm is applied to case studies as well as to 313 h of cirrus measurements collected at the Atmospheric Radiation Measurement site near Lamont, Oklahoma, in 2000. It is shown that particle size distributions in cirrus can often be described as bimodal, and that this bimodality is a function of temperature and location within cirrus layers. However, the existence of Nt > 1 cm−3 in cirrus is rare (<1% of the time) and the Nt implied by the remote sensing data tends to be on the order of 100 cm−3.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document