scholarly journals Deep-learning based, automated segmentation of macular edema in optical coherence tomography

2017 ◽  
Vol 8 (7) ◽  
pp. 3440 ◽  
Author(s):  
Cecilia S. Lee ◽  
Ariel J. Tyring ◽  
Nicolaas P. Deruyter ◽  
Yue Wu ◽  
Ariel Rokem ◽  
...  
2021 ◽  
Author(s):  
Fangyao Tang ◽  
Xi Wang ◽  
An-ran Ran ◽  
Carmen KM Chan ◽  
Mary Ho ◽  
...  

<a><b>Objective:</b></a> Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep-learning (DL) system for classifying DME using images from three common commercially available optical coherence tomography (OCT) devices. <p><b>Research Design and Methods:</b> We trained and validated two versions of a multi-task convolution neural network (CNN) to classify DME (center-involved DME [CI-DME], non-CI-DME, or absence of DME) using three-dimensional (3D) volume-scans and two-dimensional (2D) B-scans respectively. For both 3D and 2D CNNs, we employed the residual network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with the last fully connected layer removed as the feature extraction module. A total of 73,746 OCT images were used for training and primary validation. External testing was performed using 26,981 images across seven independent datasets from Singapore, Hong Kong, the US, China, and Australia. </p> <p><b>Results:</b> In classifying the presence or absence of DME, the DL system achieved area under the receiver operating characteristic curves (AUROCs) of 0.937 (95% CI 0.920–0.954), 0.958 (0.930–0.977), and 0.965 (0.948–0.977) for primary dataset obtained from Cirrus, Spectralis, and Triton OCTs respectively, in addition to AUROCs greater than 0.906 for the external datasets. For the further classification of the CI-DME and non-CI-DME subgroups, the AUROCs were 0.968 (0.940–0.995), 0.951 (0.898–0.982), and 0.975 (0.947–0.991) for the primary dataset and greater than 0.894 for the external datasets. </p> <p><b>Conclusion:</b> We demonstrated excellent performance with a DL system for the automated classification of DME, highlighting its potential as a promising second-line screening tool for patients with DM, which may potentially create a more effective triaging mechanism to eye clinics. </p>


2017 ◽  
Author(s):  
Cecilia S. Lee ◽  
Ariel J. Tyring ◽  
Nicolaas P. Deruyter ◽  
Yue Wu ◽  
Ariel Rokem ◽  
...  

AbstractEvaluation of clinical images is essential for diagnosis in many specialties and the development of computer vision algorithms to analyze biomedical images will be important. In ophthalmology, optical coherence tomography (OCT) is critical for managing retinal conditions. We developed a convolutional neural network (CNN) that detects intraretinal fluid (IRF) on OCT in a manner indistinguishable from clinicians. Using 1,289 OCT images, the CNN segmented images with a 0.911 cross-validated Dice coefficient, compared with segmentations by experts. Additionally, the agreement between experts and between experts and CNN were similar. Our results reveal that CNN can be trained to perform automated segmentations.


Sign in / Sign up

Export Citation Format

Share Document