Compact cluster states generation and gaussian quantum computation in continuous variable

Author(s):  
Giulia Ferrini ◽  
Nicolas Treps
2021 ◽  
Author(s):  
Shuhong Hao ◽  
Xiaowei Deng ◽  
Yang Liu ◽  
Xiaolong Su ◽  
Changde Xie ◽  
...  

2006 ◽  
Vol 97 (11) ◽  
Author(s):  
Nicolas C. Menicucci ◽  
Peter van Loock ◽  
Mile Gu ◽  
Christian Weedbrook ◽  
Timothy C. Ralph ◽  
...  

2008 ◽  
Vol 78 (1) ◽  
Author(s):  
Mitsuyoshi Yukawa ◽  
Ryuji Ukai ◽  
Peter van Loock ◽  
Akira Furusawa

2015 ◽  
Vol 91 (3) ◽  
Author(s):  
Kevin Marshall ◽  
Raphael Pooser ◽  
George Siopsis ◽  
Christian Weedbrook

2010 ◽  
Vol 08 (01n02) ◽  
pp. 181-218 ◽  
Author(s):  
MARCIN ZWIERZ ◽  
PIETER KOK

Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes — stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium — an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single stepQ-qubit GHZ states with success probability psuccess ~ ηQ/2, where η is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer.


2015 ◽  
Vol 92 (3) ◽  
Author(s):  
Shota Yokoyama ◽  
Ryuji Ukai ◽  
Seiji C. Armstrong ◽  
Jun-ichi Yoshikawa ◽  
Peter van Loock ◽  
...  

PRX Quantum ◽  
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Carlos González-Arciniegas ◽  
Paulo Nussenzveig ◽  
Marcelo Martinelli ◽  
Olivier Pfister

Sign in / Sign up

Export Citation Format

Share Document