scholarly journals Total variation minimization approach in in-line x-ray phase-contrast tomography

2013 ◽  
Vol 21 (10) ◽  
pp. 12185 ◽  
Author(s):  
Alexander Kostenko ◽  
K. Joost Batenburg ◽  
Andrew King ◽  
S. Erik Offerman ◽  
Lucas J. van Vliet
2013 ◽  
Vol 21 (1) ◽  
pp. 710 ◽  
Author(s):  
Alexander Kostenko ◽  
K. Joost Batenburg ◽  
Heikki Suhonen ◽  
S. Erik Offerman ◽  
Lucas J. van Vliet

Author(s):  
Inna Bukreeva ◽  
Graziano Ranocchia ◽  
Vincenzo Formoso ◽  
Michele Alessandrelli ◽  
Michela Fratini ◽  
...  

ACS Nano ◽  
2016 ◽  
Vol 10 (8) ◽  
pp. 7990-7997 ◽  
Author(s):  
Fu Sun ◽  
Lukas Zielke ◽  
Henning Markötter ◽  
André Hilger ◽  
Dong Zhou ◽  
...  

2018 ◽  
Vol 115 (27) ◽  
pp. 6940-6945 ◽  
Author(s):  
Mareike Töpperwien ◽  
Franziska van der Meer ◽  
Christine Stadelmann ◽  
Tim Salditt

To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal “packing,” we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites.


Sign in / Sign up

Export Citation Format

Share Document