William P. Thurston: “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”

2014 ◽  
Vol 116 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Jean-Pierre Otal
2018 ◽  
Vol 294 (1) ◽  
pp. 1-18
Author(s):  
Waldemar Barrera Vargas ◽  
Rene Garcia-Lara ◽  
Juan Navarrete Carrillo

1967 ◽  
Vol 19 ◽  
pp. 1149-1152
Author(s):  
O. Bottema

H. S. M. Coxeter (3) has recently studied the correspondence between two geometries the isomorphism of which was well known, but to which he was able to add some remarkable consequences. The two geometries are the inversive geometry of a plane E (the Euclidean plane completed with a single point at infinity or, what is the same thing, the plane of complex numbers to which ∞ is added) on the one hand, and the hyperbolic geometry of three-dimensional space S.


2019 ◽  
Vol 12 (04) ◽  
pp. 1195-1212
Author(s):  
R. K. Guzman ◽  
P. B. Shalen

We investigate the geometry of closed, orientable, hyperbolic 3-manifolds whose fundamental groups are [Formula: see text]-free for a given integer [Formula: see text]. We show that any such manifold [Formula: see text] contains a point [Formula: see text] with the following property: If [Formula: see text] is the set of maximal cyclic subgroups of [Formula: see text] that contain non-trivial elements represented by loops of [Formula: see text], then for every subset [Formula: see text], we have rank [Formula: see text]. This generalizes to all [Formula: see text] results proved in [J. W. Anderson, R. D. Canary, M. Culler and P. B. Shalen, Free Kleinian groups and volumes of hyperbolic 3-manifolds, J. Differential Geom. 43 (1996) 738–782; M. Culler and P. B. Shalen, 4-free groups and hyperbolic geometry, J. Topol. 5 (2012) 81–136], which have been used to relate the volume of a hyperbolic manifold to its topological properties, and it strictly improves on the result obtained in [R. K. Guzman, Hyperbolic 3-manifolds with [Formula: see text]-free fundamental group, Topology Appl. 173 (2014) 142–156] for [Formula: see text]. The proof avoids the use of results about ranks of joins and intersections in free groups that were used in [M. Culler and P. B. Shalen, 4-free groups and hyperbolic geometry, J. Topol. 5 (2012) 81–136; R. K. Guzman, Hyperbolic 3-manifolds with [Formula: see text]-free fundamental group, Topology Appl. 173 (2014) 142–156].


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Sign in / Sign up

Export Citation Format

Share Document