Around the Langlands Program

2017 ◽  
Vol 120 (1) ◽  
pp. 3-40 ◽  
Author(s):  
Anne-Marie Aubert
Keyword(s):  
2017 ◽  
Vol 153 (9) ◽  
pp. 1908-1944
Author(s):  
David Ben-Zvi ◽  
David Nadler ◽  
Anatoly Preygel

We present a Langlands dual realization of the putative category of affine character sheaves. Namely, we calculate the categorical center and trace (also known as the Drinfeld center and trace, or categorical Hochschild cohomology and homology) of the affine Hecke category starting from its spectral presentation. The resulting categories comprise coherent sheaves on the commuting stack of local systems on the two-torus satisfying prescribed support conditions, in particular singular support conditions, which appear in recent advances in the geometric Langlands program. The key technical tools in our arguments are a new descent theory for coherent sheaves or ${\mathcal{D}}$-modules with prescribed singular support and the theory of integral transforms for coherent sheaves developed in the companion paper by Ben-Zvi et al. [Integral transforms for coherent sheaves, J. Eur. Math. Soc. (JEMS), to appear].


2021 ◽  
Vol 157 (8) ◽  
pp. 1653-1723
Author(s):  
Andrea Dotto ◽  
Daniel Le

Abstract We prove a local–global compatibility result in the mod $p$ Langlands program for $\mathrm {GL}_2(\mathbf {Q}_{p^f})$ . Namely, given a global residual representation $\bar {r}$ appearing in the mod $p$ cohomology of a Shimura curve that is sufficiently generic at $p$ and satisfies a Taylor–Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod $p$ completed cohomology is determined by the restrictions of $\bar {r}$ to decomposition groups at $p$ . If these restrictions are moreover semisimple, we show that the $(\varphi ,\Gamma )$ -modules attached to this diagram by Breuil give, under Fontaine's equivalence, the tensor inductions of the duals of the restrictions of $\bar {r}$ to decomposition groups at $p$ .


2018 ◽  
Vol 33 (29) ◽  
pp. 1830012 ◽  
Author(s):  
Minhyong Kim

Much of arithmetic geometry is concerned with the study of principal bundles. They occur prominently in the arithmetic of elliptic curves and, more recently, in the study of the Diophantine geometry of curves of higher genus. In particular, the geometry of moduli spaces of principal bundles holds the key to an effective version of Faltings’ theorem on finiteness of rational points on curves of genus at least 2. The study of arithmetic principal bundles includes the study of Galois representations, the structures linking motives to automorphic forms according to the Langlands program. In this paper, we give a brief introduction to the arithmetic geometry of principal bundles with emphasis on some elementary analogies between arithmetic moduli spaces and the constructions of quantum field theory.


Author(s):  
E Arasteh Rad ◽  
Urs Hartl

Abstract This is the 2nd in a sequence of articles, in which we explore moduli stacks of global $\mathfrak{G}$-shtukas, the function field analogs for Shimura varieties. Here $\mathfrak{G}$ is a flat affine group scheme of finite type over a smooth projective curve $C$ over a finite field. Global $\mathfrak{G}$-shtukas are generalizations of Drinfeld shtukas and analogs of abelian varieties with additional structure. We prove that the moduli stacks of global $\mathfrak{G}$-shtukas are algebraic Deligne–Mumford stacks separated and locally of finite type. They generalize various moduli spaces used by different authors to prove instances of the Langlands program over function fields. In the 1st article we explained the relation between global $\mathfrak{G}$-shtukas and local ${{\mathbb{P}}}$-shtukas, which are the function field analogs of $p$-divisible groups. Here ${{\mathbb{P}}}$ is the base change of $\mathfrak{G}$ to the complete local ring at a point of $C$. When ${{\mathbb{P}}}$ is smooth with connected reductive generic fiber we proved the existence of Rapoport–Zink spaces for local ${{\mathbb{P}}}$-shtukas. In the present article we use these spaces to (partly) uniformize the moduli stacks of global $\mathfrak{G}$-shtukas for smooth $\mathfrak{G}$ with connected fibers and reductive generic fiber. This is our main result. It has applications to the analog of the Langlands–Rapoport conjecture for our moduli stacks.


2018 ◽  
Vol 2017 (734) ◽  
pp. 59-69
Author(s):  
Tomoyuki Abe

AbstractIn this paper, we prove that, if Deligne’s “petits camarades conjecture” holds, then a Langlands type correspondence holds also forp-adic coefficients on a smooth curve over a finite field. As an application, we prove that any overconvergentF-isocrystal of rank less than or equal to 2 on a smooth curve is ι-mixed.


Sign in / Sign up

Export Citation Format

Share Document