scholarly journals Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel

PLoS Biology ◽  
2017 ◽  
Vol 15 (12) ◽  
pp. e2004470 ◽  
Author(s):  
Ákos Nemecz ◽  
Haidai Hu ◽  
Zaineb Fourati ◽  
Catherine Van Renterghem ◽  
Marc Delarue ◽  
...  
Author(s):  
G. Brent Dawe ◽  
Patricia M. G. E. Brown ◽  
Derek Bowie

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate-type glutamate receptors (AMPARs and KARs) are dynamic ion channel proteins that govern neuronal excitation and signal transduction in the mammalian brain. The four AMPAR and five KAR subunits can heteromerize with other subfamily members to create several combinations of tetrameric channels with unique physiological and pharmacological properties. While both receptor classes are noted for their rapid, millisecond-scale channel gating in response to agonist binding, the intricate structural rearrangements underlying their function have only recently been elucidated. This chapter begins with a review of AMPAR and KAR nomenclature, topology, and rules of assembly. Subsequently, receptor gating properties are outlined for both single-channel and synaptic contexts. The structural biology of AMPAR and KAR proteins is also discussed at length, with particular focus on the ligand-binding domain, where allosteric regulation and alternative splicing work together to dictate gating behavior. Toward the end of the chapter there is an overview of several classes of auxiliary subunits, notably transmembrane AMPAR regulatory proteins and Neto proteins, which enhance native AMPAR and KAR expression and channel gating, respectively. Whether bringing an ion channel novice up to speed with glutamate receptor theory and terminology or providing a refresher for more seasoned biophysicists, there is much to appreciate in this summation of work from the glutamate receptor field.


2009 ◽  
Vol 96 (3) ◽  
pp. 488a
Author(s):  
Andrei A. Aleksandrov ◽  
Luing Cui ◽  
John R. Riordan

1997 ◽  
Vol 29 (01) ◽  
pp. 92-113 ◽  
Author(s):  
Frank Ball ◽  
Sue Davies

The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space. The state space is partitioned into two classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class the process is in. In many experiments channel openings occur in bursts. This can be modelled by partitioning the closed states further into ‘short-lived’ and ‘long-lived’ closed states, and defining a burst of openings to be a succession of open sojourns separated by closed sojourns that are entirely within the short-lived closed states. There is also evidence that bursts of openings are themselves grouped together into clusters. This clustering of bursts can be described by the ratio of the variance Var (N(t)) to the mean[N(t)] of the number of bursts of openings commencing in (0, t]. In this paper two methods of determining Var (N(t))/[N(t)] and limt→∝Var (N(t))/[N(t)] are developed, the first via an embedded Markov renewal process and the second via an augmented continuous-time Markov chain. The theory is illustrated by a numerical study of a molecular stochastic model of the nicotinic acetylcholine receptor. Extensions to semi-Markov models of ion channel gating and the incorporation of time interval omission are briefly discussed.


FEBS Letters ◽  
1998 ◽  
Vol 431 (1) ◽  
pp. 97-101 ◽  
Author(s):  
Andrei A. Aleksandrov ◽  
John R. Riordan

Sign in / Sign up

Export Citation Format

Share Document