channel gating
Recently Published Documents


TOTAL DOCUMENTS

1063
(FIVE YEARS 87)

H-INDEX

81
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Avnika Bali ◽  
Samantha P Schaefer ◽  
Isabelle Trier ◽  
Alice L Zhang ◽  
Lilian Kabeche ◽  
...  

The wasabi receptor, TRPA1, is a non-selective homotetrameric cation channel expressed in primary sensory neurons of the pain pathway, where it is activated by diverse chemical irritants. A direct role for TRPA1 in human health has been highlighted by the discovery of genetic variants associated with severe pain disorders. One such TRPA1 mutant was identified in a father-son pair with cramp fasciculation syndrome (CFS) and neuronal hyperexcitability-hypersensitivity symptoms that may be caused by aberrant channel activity, though the mechanism of action for this mutant is unknown. Here, we show the CFS-associated R919* TRPA1 mutant is functionally inactive when expressed alone in heterologous cells, which is not surprising since it lacks the 201 C-terminal amino acids that house critical channel gating machinery including the pore-lining transmembrane helix. Interestingly, the R919* mutant confers enhanced agonist sensitivity when co-expressed with wild type (WT) TRPA1. This channel hyperactivation mechanism is conserved in distant TRPA1 species orthologues and can be recapitulated in the capsaicin receptor, TRPV1. Using a combination of ratiometric calcium imaging, immunostaining, surface biotinylation, pulldown assays, fluorescence size exclusion chromatography, and proximity biotinylation assays, we show that the R919* mutant co-assembles with WT subunits into heteromeric channels. Within these heteromers, we postulate that R919* TRPA1 subunits contribute to hyperactivation by lowering energetic barriers to channel activation contributed by the missing regions. Additionally, we show heteromer activation can originate from the R919* TRPA1 subunits, which suggests an unexpected role for the ankyrin repeat and coiled coil domains in concerted channel gating. Our results demonstrate the R919* TRPA1 mutant confers gain-of-function thereby expanding the physiological impact of nonsense mutations, reveals a novel and genetically tractable mechanism for selective channel sensitization that may be broadly applicable to other receptors, and uncovers new gating insights that may explain the molecular mechanism of temperature sensing by some TRPA1 orthologues.


2021 ◽  
Author(s):  
Sharon Wong ◽  
Nikhil Awatade ◽  
Miro Astore ◽  
Katelin Allan ◽  
Michael Carnell ◽  
...  

Characterisation of I37R, a novel mutation in the lasso motif of ABC-transporter CFTR, a chloride channel, was conducted by theratyping using CFTR potentiators which increase channel gating activity and correctors which repair protein trafficking defects. I37R-CFTR function was characterised using intestinal current measurements (ICM) in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids and short circuit current measurements (Isc) in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype. We demonstrated that the I37R-CFTR mutation results in a residual function defect amenable to treatment with potentiators and type III, but not to type I, correctors. Molecular dynamics of I37R-CFTR using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavourable strengthening of the interactions between the lasso motif, the regulatory (R) domain and the transmembrane domain two (TMD2). In conclusion, structural and functional characterisation of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to access CFTR modulator treatments for individuals with CF caused by ultra-rare CFTR mutations.


iScience ◽  
2021 ◽  
pp. 103710
Author(s):  
Sharon L. Wong ◽  
Nikhil T. Awatade ◽  
Miro A. Astore ◽  
Katelin M. Allan ◽  
Michael J. Carnell ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. S299-S300
Author(s):  
P. Liyanage ◽  
K. Mun ◽  
S. Yarlagadda ◽  
Y. Huang ◽  
A. Naren

2021 ◽  
Vol 118 (44) ◽  
pp. e2108796118
Author(s):  
Carol A. Harley ◽  
Ganeko Bernardo-Seisdedos ◽  
Whitney A. Stevens-Sostre ◽  
David K. Jones ◽  
Maria M. Azevedo ◽  
...  

The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS–CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.


Author(s):  
Jia Liu ◽  
Allison P. Berg ◽  
Yiting Wang ◽  
Walailak Jantarajit ◽  
Katy J. Sutcliffe ◽  
...  

Author(s):  
Yousra El Ghaleb ◽  
Monica L. Fernández-Quintero ◽  
Stefania Monteleone ◽  
Petronel Tuluc ◽  
Marta Campiglio ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9169
Author(s):  
Camillo Peracchia

The cloning of connexins cDNA opened the way to the field of gap junction channelopathies. Thus far, at least 35 genetic diseases, resulting from mutations of 11 different connexin genes, are known to cause numerous structural and functional defects in the central and peripheral nervous system as well as in the heart, skin, eyes, teeth, ears, bone, hair, nails and lymphatic system. While all of these diseases are due to connexin mutations, minimal attention has been paid to the potential diseases of cell–cell communication caused by mutations of Cx-associated molecules. An important Cx accessory protein is calmodulin (CaM), which is the major regulator of gap junction channel gating and a molecule relevant to gap junction formation. Recently, diseases caused by CaM mutations (calmodulinopathies) have been identified, but thus far calmodulinopathy studies have not considered the potential effect of CaM mutations on gap junction function. The major goal of this review is to raise awareness on the likely role of CaM mutations in defects of gap junction mediated cell communication. Our studies have demonstrated that certain CaM mutants affect gap junction channel gating or expression, so it would not be surprising to learn that CaM mutations known to cause diseases also affect cell communication mediated by gap junction channels.


2021 ◽  
Author(s):  
Victor V Matveev

Ca2+-dependent cell processes such as neurotransmitter or endocrine vesicle fusion are inherently stochastic due to large fluctuations in Ca2+ channel gating, Ca2+ diffusion and Ca2+ binding to buffers and target sensors. However, prior studies revealed closer-than-expected agreement between deterministic and stochastic simulations of Ca2+ diffusion, buffering and sensing, as long as Ca2+ channel gating is not Ca2+-dependent. To understand this result more fully, we present a comparative study complementing prior work, focusing on Ca2+ dynamics downstream of Ca2+ channel gating. Specifically, we compare deterministic (mean-field / mass-action) and stochastic simulations of vesicle exocytosis latency, quantified by the probability density of the first-passage time (FPT) to the Ca2+-bound state of a vesicle fusion sensor, following a brief Ca2+ current pulse. We show that under physiological constraints, the discrepancy between FPT densities obtained using the two approaches remains small even if as few as ⁓50 Ca2+ ions enter per single channel-vesicle release unit. Using a reduced two-compartment model for ease of analysis, we illustrate how this close agreement arises from the smallness of correlations between fluctuations of the reactant molecule numbers, despite the large magnitude of the fluctuation amplitudes. This holds if all relevant reactions are heteroreaction between molecules of different species, as is the case for the bimolecular Ca2+ binding to buffers and downstream sensor targets. In this case diffusion and buffering effectively decorrelate the state of the Ca2+ sensor from local Ca2+ fluctuations. Thus, fluctuations in the Ca2+ sensor state underlying the FPT distribution are only weakly affected by the fluctuations in the local Ca2+ concentration around its average, deterministically computable value.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 473
Author(s):  
Alvaro R. Ruiz-Fernández ◽  
Leonardo Campos ◽  
Felipe Villanelo ◽  
Sebastian E. Gutiérrez-Maldonado ◽  
Tomas Perez-Acle

Nanosecond Pulsed Electric Field (nsPEF or Nano Pulsed Stimulation, NPS) is a technology that delivers a series of pulses of high-voltage electric fields during a short period of time, in the order of nanoseconds. The main consequence of nsPEF upon cells is the formation of nanopores, which is followed by the gating of ionic channels. Literature is conclusive in that the physiological mechanisms governing ion channel gating occur in the order of milliseconds. Hence, understanding how these channels can be activated by a nsPEF would be an important step in order to conciliate fundamental biophysical knowledge with improved nsPEF applications. To get insights on both the kinetics and thermodynamics of ion channel gating induced by nsPEF, in this work, we simulated the Voltage Sensing Domain (VSD) of a voltage-gated Ca2+ channel, inserted in phospholipidic membranes with different concentrations of cholesterol. We studied the conformational changes of the VSD under a nsPEF mimicked by the application of a continuous electric field lasting 50 ns with different intensities as an approach to reveal novel mechanisms leading to ion channel gating in such short timescales. Our results show that using a membrane with high cholesterol content, under an nsPEF of 50 ns and E→ = 0.2 V/nm, the VSD undergoes major conformational changes. As a whole, our work supports the notion that membrane composition may act as an allosteric regulator, specifically cholesterol content, which is fundamental for the response of the VSD to an external electric field. Moreover, changes on the VSD structure suggest that the gating of voltage-gated Ca2+ channels by a nsPEF may be due to major conformational changes elicited in response to the external electric field. Finally, the VSD/cholesterol-bilayer under an nsPEF of 50 ns and E→ = 0.2 V/nm elicits a pore formation across the VSD suggesting a new non-reported effect of nsPEF into cells, which can be called a “protein mediated electroporation”.


Sign in / Sign up

Export Citation Format

Share Document