regulatory proteins
Recently Published Documents


TOTAL DOCUMENTS

2372
(FIVE YEARS 308)

H-INDEX

119
(FIVE YEARS 11)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Alwyn C. Go ◽  
Alberto Civetta

Abstract Background The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. Results We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein’s DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. Conclusions We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.


2022 ◽  
Vol 23 (1) ◽  
pp. 562
Author(s):  
Jannette Carey

Nearly all of biology depends on interactions between molecules: proteins with small molecules, proteins with other proteins, nucleic acids with small molecules, and nucleic acids with proteins that regulate gene expression, our concern in this Special Issue. All those kinds of interactions, and others, constitute the vast majority of biology at the molecular level. An understanding of those interactions requires that we quantify them to learn how they interact: How strongly? With which partners? How—and how well—are different partners distinguished? This review addresses the evolution of our current understanding of the molecular origins of affinity and specificity in regulatory protein–DNA interactions, and suggests that both these properties can be modulated by cooperativity.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Alexei F. Kisselev

Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.


Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 694-700
Author(s):  
Anil Kumar K. V. ◽  
Kavitha S. ◽  
Sreekanth K. S.

The vasculature of the placenta plays a crucial role during the course of pregnancy in order to maintain the growing need of the fetus. Abnormal placental structure and function significantly increase the risk of stillbirth. Various growth factors and cytokines play an important role in the vasculogenesis and angiogenesis of placenta. These processes are stimulated by various pro-angiogenic factors. The activities of these factors are also stimulated by hypoxia. In some of the physiological phenomenon like ovulation, embryogenesis as well as in wound healing intense blood vessel growth can be seen similar to that seen in placenta. Therefore, factors that induce and maintain placental vascular growth and function are of considerable developmental and clinical significance. The total arterial architecture may also depend upon the pro-angiogenic factors. Hormones and other growth factors are other contributors of this vasculogenesis and angiogenesis. Any dysfunction of factors can lead to foetal hypoxia and related complications. This review describes the major growth factors and their significant role in vasculogenesis and angiogenesis of placenta.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Anna-Sophia Krebs ◽  
Luiza M. Mendonça ◽  
Peijun Zhang

Retroviruses have a very complex and tightly controlled life cycle which has been studied intensely for decades. After a virus enters the cell, it reverse-transcribes its genome, which is then integrated into the host genome, and subsequently all structural and regulatory proteins are transcribed and translated. The proteins, along with the viral genome, assemble into a new virion, which buds off the host cell and matures into a newly infectious virion. If any one of these steps are faulty, the virus cannot produce infectious viral progeny. Recent advances in structural and molecular techniques have made it possible to better understand this class of viruses, including details about how they regulate and coordinate the different steps of the virus life cycle. In this review we summarize the molecular analysis of the assembly and maturation steps of the life cycle by providing an overview on structural and biochemical studies to understand these processes. We also outline the differences between various retrovirus families with regards to these processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meirong Shan ◽  
Xujie Yu ◽  
Yajie Li ◽  
Changning Fu ◽  
Cheng Zhang

Vitamin B6 (VitB6) is a water-soluble vitamin and includes pyridoxine, pyridoxal, pyridoxamine, and their phosphorylated forms. In the current study, we demonstrated that VitB6 could improve lipopolysaccharide (LPS)–induced myocardial injury. We demonstrated that VitB6 can suppress LPS-induced oxidative stress and lipid peroxidation that lead to ferroptosis and apoptosis in vivo and in vitro. Moreover, we found that VitB6 can regulate the expression of iron regulatory proteins, maintaining intracellular iron homeostasis. To confirm that VitB6 could inhibit LPS-induced ferroptosis and apoptosis, we pretreated mice with ferrostatin-1 (Fer-1) and emricasan that efficiently mimicked VitB6 pharmacological effects. This improved the survival rate of mice challenged with a high LPS dose. In addition, VitB6 regulated the expression of LPS-induced apoptosis-related proteins and iron regulatory proteins. It mediated the expression of Nrf2, transcription factor NF-E2–related factor 2, which promoted the expression of antioxidant enzymes and restrained LPS-induced ferroptosis and apoptosis. Overall, our results indicated that VitB6 can be used on novel therapies to relieve LPS-induced myocardial injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yasunobu Okada ◽  
Ravshan Z. Sabirov ◽  
Petr G. Merzlyak ◽  
Tomohiro Numata ◽  
Kaori Sato-Numata

Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.


2021 ◽  
Author(s):  
Liping Zeng ◽  
Hao Chen ◽  
Yaqi Wang ◽  
Derrick Hicks ◽  
Haiyan Ke ◽  
...  

Transcriptional regulators of general stress response (GSR) reprogram expression of selected genes to transduce informational signals into cellular events, ultimately manifested in plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) that binds to the previously established functional GSR motif, coined Rapid Stress Response Element (RSRE). This led to the isolation of ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47), a Methyl jasmonate (MeJA) inducible protein. Subsequently, the ORA47 transcriptional activity was confirmed using RSRE-driven Luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of MeJA led to enhanced levels of ORA47 and CAMTA3 transcripts, and the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3580
Author(s):  
Rupesh Raina ◽  
Nina Vijayvargiya ◽  
Amrit Khooblall ◽  
Manasa Melachuri ◽  
Shweta Deshpande ◽  
...  

Atypical hemolytic uremic syndrome (aHUS) is a rare disorder characterized by dysregulation of the alternate pathway. The diagnosis of aHUS is one of exclusion, which complicates its early detection and corresponding intervention to mitigate its high rate of mortality and associated morbidity. Heterozygous mutations in complement regulatory proteins linked to aHUS are not always phenotypically active, and may require a particular trigger for the disease to manifest. This list of triggers continues to expand as more data is aggregated, particularly centered around COVID-19 and pediatric vaccinations. Novel genetic mutations continue to be identified though advancements in technology as well as greater access to cohorts of interest, as in diacylglycerol kinase epsilon (DGKE). DGKE mutations associated with aHUS are the first non-complement regulatory proteins associated with the disease, drastically changing the established framework. Additional markers that are less understood, but continue to be acknowledged, include the unique autoantibodies to complement factor H and complement factor I which are pathogenic drivers in aHUS. Interventional therapeutics have undergone the most advancements, as pharmacokinetic and pharmacodynamic properties are modified as needed in addition to their as biosimilar counterparts. As data continues to be gathered in this field, future advancements will optimally decrease the mortality and morbidity of this disease in children.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7658
Author(s):  
Somayyeh Ghareghomi ◽  
Mahdie Rahban ◽  
Zainab Moosavi-Movahedi ◽  
Mehran Habibi-Rezaei ◽  
Luciano Saso ◽  
...  

Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells’ redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.


Sign in / Sign up

Export Citation Format

Share Document