scholarly journals Antibody Watch: Text mining antibody specificity from the literature

2021 ◽  
Vol 17 (5) ◽  
pp. e1008967
Author(s):  
Chun-Nan Hsu ◽  
Chia-Hui Chang ◽  
Thamolwan Poopradubsil ◽  
Amanda Lo ◽  
Karen A. William ◽  
...  

Antibodies are widely used reagents to test for expression of proteins and other antigens. However, they might not always reliably produce results when they do not specifically bind to the target proteins that their providers designed them for, leading to unreliable research results. While many proposals have been developed to deal with the problem of antibody specificity, it is still challenging to cover the millions of antibodies that are available to researchers. In this study, we investigate the feasibility of automatically generating alerts to users of problematic antibodies by extracting statements about antibody specificity reported in the literature. The extracted alerts can be used to construct an “Antibody Watch” knowledge base containing supporting statements of problematic antibodies. We developed a deep neural network system and tested its performance with a corpus of more than two thousand articles that reported uses of antibodies. We divided the problem into two tasks. Given an input article, the first task is to identify snippets about antibody specificity and classify if the snippets report that any antibody exhibits non-specificity, and thus is problematic. The second task is to link each of these snippets to one or more antibodies mentioned in the snippet. The experimental evaluation shows that our system can accurately perform the classification task with 0.925 weighted F1-score, linking with 0.962 accuracy, and 0.914 weighted F1 when combined to complete the joint task. We leveraged Research Resource Identifiers (RRID) to precisely identify antibodies linked to the extracted specificity snippets. The result shows that it is feasible to construct a reliable knowledge base about problematic antibodies by text mining.

Author(s):  
Lean Yu ◽  
Shouyang Wang ◽  
Kin Keung Lai

With the rapid increase of the huge amount of online information, there is a strong demand for Web text mining which helps people discover some useful knowledge from Web documents. For this purpose, this chapter first proposes a back-propagation neural network (BPNN)-based Web text mining system for decision support. In the BPNN-based Web text mining system, four main processes, Web document search, Web text processing, text feature conversion, and BPNN-based knowledge discovery, are involved. Particularly, BPNN is used as an intelligent learning agent that learns about underlying Web documents. In order to scale the individual intelligent agent with the large number of Web documents, we then provide a multi-agent-based neural network system for Web text mining in a parallel way. For illustration purpose, a simulated experiment is performed. Experiment results reveal that the proposed multi-agent neural network system is an effective solution to large scale Web text mining.


Author(s):  
Lean Yu ◽  
Shouyang Wang ◽  
Kin Keung Lai

With the rapid increase of the huge amount of online information, there is a strong demand for Web text mining which helps people discover some useful knowledge from Web documents. For this purpose, this chapter first proposes a back-propagation neural network (BPNN)-based Web text mining system for decision support. In the BPNN-based Web text mining system, four main processes, Web document search, Web text processing, text feature conversion, and BPNN-based knowledge discovery, are involved. Particularly, BPNN is used as an intelligent learning agent that learns about underlying Web documents. In order to scale the individual intelligent agent with the large number of Web documents, we then provide a multi-agent-based neural network system for Web text mining in a parallel way. For illustration purpose, a simulated experiment is performed. Experiment results reveal that the proposed multi-agent neural network system is an effective solution to large scale Web text mining.


2021 ◽  
Author(s):  
Takeshi Okanoue ◽  
Toshihide Shima ◽  
Yasuhide Mitsumoto ◽  
Atsushi Umemura ◽  
Kanji Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document