the basin of attraction
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
M. D. Vijayakumar ◽  
Alireza Bahramian ◽  
Hayder Natiq ◽  
Karthikeyan Rajagopal ◽  
Iqtadar Hussain

Hidden attractors generated by the interactions of dynamical variables may have no equilibrium point in their basin of attraction. They have grabbed the attention of mathematicians who investigate strange attractors. Besides, quadratic hyperjerk systems are under the magnifying glass of these mathematicians because of their elegant structures. In this paper, a quadratic hyperjerk system is introduced that can generate chaotic attractors. The dynamical behaviors of the oscillator are investigated by plotting their Lyapunov exponents and bifurcation diagrams. The multistability of the hyperjerk system is investigated using the basin of attraction. It is revealed that the system is bistable when one of its attractors is hidden. Besides, the complexity of the systems’ attractors is investigated using sample entropy as the complexity feature. It is revealed how changing the parameters can affect the complexity of the systems’ time series. In addition, one of the hyperjerk system equilibrium points is stabilized using impulsive control. All real initial conditions become the equilibrium points of the basin of attraction using the stabilizing method.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8241
Author(s):  
Jianhua Zhao ◽  
Hanwen Zhang ◽  
Bo Qin ◽  
Yongqiang Wang ◽  
Xiaochen Wu ◽  
...  

Magnetic-Liquid Double Suspension Bearing (MLDSB) is composed of an electromagnetic supporting and a hydrostatic supporting system. Due to greater supporting capacity and static stiffness, it is appropriate for occasions of middle speed, overloading, and frequent starting. Because of the complicated structure of the supporting system, the probability and degree of static bifurcation of MLDSB can be increased by the coupling of hydrostatic force and electromagnetism force, and then the supporting capacity and operation stability are reduced. As the key part of MLDSB, the controller makes an important impact on its supporting capacity, operation stability, and reliability. Firstly, the mathematical model of MLDSB is established in the paper. Secondly, the static bifurcation point of MLDSB is determined, and the influence of parameters of the controller on singular point characteristics is analyzed. Finally, the influence of parameters of the controller on phase trajectories and basin of attraction is analyzed. The result showed that the pitchfork bifurcation will occur as proportional feedback coefficient Kp increases, and the static bifurcation point is Kp = −60.55. When Kp < −60.55, the supporting system only has one stable node (0, 0). When Kp > −60.55, the supporting system has one unstable saddle (0, 0) and two stable non-null focuses or nodes. The shape of the basin of attraction changed greatly as Kp increases from −60.55 to 30, while the outline of the basin of attraction is basically fixed as Kp increases from 30 to 80. Differential feedback coefficient Kd has no effect on the static bifurcation of MLDSB. The rotor phase trajectory obtained from theoretical simulation and experimental tests are basically consistent, and the error is due to the leakage and damping effect of the hydrostatic system within the allowable range of the engineering. The research in the paper can provide theoretical reference for static bifurcation analysis of MLDSB.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xianming Wu ◽  
Huihai Wang ◽  
Shaobo He

Investigation of the classical self-excited and hidden attractors in the modified Chua’s circuit is a hot and interesting topic. In this article, a novel Chua’s circuit system with an absolute item is investigated. According to the mathematical model, dynamic characteristics are analyzed, including symmetry, equilibrium stability analysis, Hopf bifurcation analysis, Lyapunov exponents, bifurcation diagram, and the basin of attraction. The hidden attractors are located theoretically. Then, the coexistence of the hidden limit cycle and self-excited chaotic attractors are observed numerically and experimentally. The numerical simulation results are consistent with the FPGA implementation results. It shows that the hidden attractor can be localized in the digital circuit.


Author(s):  
Giuseppe Habib

AbstractA new algorithm for the estimation of the robustness of a dynamical system’s equilibrium is presented. Unlike standard approaches, the algorithm does not aim to identify the entire basin of attraction of the solution. Instead, it iteratively estimates the so-called local integrity measure, that is, the radius of the largest hypersphere entirely included in the basin of attraction of a solution and centred in the solution. The procedure completely overlooks intermingled and fractal regions of the basin of attraction, enabling it to provide a significant engineering quantity in a very short time. The algorithm is tested on four different mechanical systems of increasing dimension, from 2 to 8. For each system, the variation of the integrity measure with respect to a system parameter is evaluated, proving the engineering relevance of the results provided. Despite some limitations, the algorithm proved to be a viable alternative to more complex and computationally demanding methods, making it a potentially appealing tool for industrial applications.


Science ◽  
2021 ◽  
Vol 372 (6547) ◽  
pp. eaay4895
Author(s):  
Babak M. S. Arani ◽  
Stephen R. Carpenter ◽  
Leo Lahti ◽  
Egbert H. van Nes ◽  
Marten Scheffer

Ecological resilience is the magnitude of the largest perturbation from which a system can still recover to its original state. However, a transition into another state may often be invoked by a series of minor synergistic perturbations rather than a single big one. We show how resilience can be estimated in terms of average life expectancy, accounting for this natural regime of variability. We use time series to fit a model that captures the stochastic as well as the deterministic components. The model is then used to estimate the mean exit time from the basin of attraction. This approach offers a fresh angle to anticipating the chance of a critical transition at a time when high-resolution time series are becoming increasingly available.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ramesh Ramamoorthy ◽  
Sajjad Shaukat Jamal ◽  
Iqtadar Hussain ◽  
Mahtab Mehrabbeik ◽  
Sajad Jafari ◽  
...  

Studying new chaotic flows with specific characteristics has been an open-ended field of exploring nonlinear dynamics. Investigation of chaotic flows is an area of research that has been taken into consideration for many years; thus, it helps in a better understanding of the chaotic systems. In this paper, an original chaotic 3D system, which has not been investigated yet, is presented in spherical coordinates. A unique feature of the proposed system is that its velocity becomes zero for a specific value of the radius variable. Hence, the system’s attractor is expected to be stuck on one side of a plane in spherical coordinates and inside or outside a sphere in the corresponding Cartesian coordinates. It means that the attractor cannot pass through the sphere or even touch it. The introduced system owns two unstable equilibria and a self-excited strange attractor. The 1D and 2D system’s bifurcation diagrams concerning the alteration of two bifurcation parameters are plotted to investigate the system’s dynamical properties. Moreover, the system’s Lyapunov exponents in the corresponding period of bifurcation parameters are calculated. Then, two 2D basins of attraction for two different third dimension values are explored. Based on the basin of attraction, it can be found that the sphere has attraction itself, partially, and some initial conditions are led to the sphere, not to the strange attractor. Ultimately, the connecting curves of the proposed system are explored to find an informative 1D set in addition to the system’s equilibria.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Juan Neirotti

AbstractWe consider the process of opinion formation, in a society where there is a set of rules B that indicates whether a social instance is acceptable. Public opinion is formed by the integration of the voters’ attitudes which can be either conservative (mostly in agreement with B) or liberal (mostly in disagreement with B and in agreement with peer voters). These attitudes are represented by stable fixed points in the phase space of the system. In this article we study the properties of a perturbative term, mimicking the effects of a publicity campaign, that pushes the system from the basin of attraction of the liberal fixed point into the basin of the conservative point, when both fixed points are equally likely.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Long Ding ◽  
Li Cui ◽  
Fei Yu ◽  
Jie Jin

Memristor is the fourth basic electronic element discovered in addition to resistor, capacitor, and inductor. It is a nonlinear gadget with memory features which can be used for realizing chaotic, memory, neural network, and other similar circuits and systems. In this paper, a novel memristor-based fractional-order chaotic system is presented, and this chaotic system is taken as an example to analyze its dynamic characteristics. First, we used Adomian algorithm to solve the proposed fractional-order chaotic system and yield a chaotic phase diagram. Then, we examined the Lyapunov exponent spectrum, bifurcation, SE complexity, and basin of attraction of this system. We used the resulting Lyapunov exponent to describe the state of the basin of attraction of this fractional-order chaotic system. As the local minimum point of Lyapunov exponential function is the stable point in phase space, when this stable point in phase space comes into the lowest region of the basin of attraction, the solution of the chaotic system is yielded. In the analysis, we yielded the solution of the system equation with the same method used to solve the local minimum of Lyapunov exponential function. Our system analysis also revealed the multistability of this system.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
S. S. Askar ◽  
A. Ibrahim ◽  
A. A. Elsadany

A Cournot duopoly game is a two-firm market where the aim is to maximize profits. It is rational for every company to maximize its profits with minimal sales constraints. As a consequence, a model of constrained profit maximization (CPM) occurs when a business needs to be increased with profit minimal sales constraints. The CPM model, in which companies maximize profits under the minimum sales constraints, is an alternative to the profit maximization model. The current study constructs a duopoly game based on an isoelastic demand and homogeneous goods with heterogeneous strategies. In the event of sales constraint and no sales constraint, the local stability conditions of the Cournot equilibrium are derived. The initial results show that the duopoly model would be easier to stabilize if firms were to impose certain minimum sales constraints. Two routes to chaos are analyzed by numerical simulation using 2D bifurcation diagram, one of which is period doubling bifurcation and the other is Neimark–Sacker bifurcation. Four forms of coexistence of attractors are demonstrated by the basin of attraction, which is the coexistence of periodic attractors and chaotic attractors, the coexistence of periodic attractors and quasiperiodic attractors, and the coexistence of several chaotic attractors. Our findings show that the effect of game parameters on stability depends on the rules of expectations and restriction of sales by firms.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yélomè Judicaël Fernando Kpomahou ◽  
Laurent Amoussou Hinvi ◽  
Joseph Adébiyi Adéchinan ◽  
Clément Hodévèwan Miwadinou

In this paper, chaotic dynamics of a mixed Rayleigh–Liénard oscillator driven by parametric periodic damping and external excitations is investigated analytically and numerically. The equilibrium points and their stability evolutions are analytically analyzed, and the transitions of dynamical behaviors are explored in detail. Furthermore, from the Melnikov method, the analytical criterion for the appearance of the homoclinic chaos is derived. Analytical prediction is tested against numerical simulations based on the basin of attraction of initial conditions. As a result, it is found that for ω = ν , the chaotic region decreases and disappears when the amplitude of the parametric periodic damping excitation increases. Moreover, increasing of F 1 and F 0 provokes an erosion of the basin of attraction and a modification of the geometrical shape of the chaotic attractors. For ω ≠ ν and η = 0.8 , the fractality of the basin of attraction increases as the amplitude of the external periodic excitation and constant term increase. Bifurcation structures of our system are performed through the fourth-order Runge–Kutta ode 45 algorithm. It is found that the system displays a remarkable route to chaos. It is also found that the system exhibits monostable and bistable oscillations as well as the phenomenon of coexistence of attractors.


Sign in / Sign up

Export Citation Format

Share Document