Design of optimal MLP and RBF neural network classifier for fault diagnosis of three phase induction motor

2010 ◽  
Vol 2 (3) ◽  
pp. 204 ◽  
Author(s):  
V.N. Ghate ◽  
S.V. Dudul
2013 ◽  
Vol 462-463 ◽  
pp. 85-88 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

In order to improve the diagnosis accuracy of stator short circuit faults of three-phase induction motors, in this paper, a method using three-layered RBF neural network is proposed to diagnose the short circuit faults on the basis of analysis of structure and algorithm of RBF neural network. Then the approach to establish RBF neural network and the influence of different expanding coefficients upon the diagnosis accuracy are illustrated. The simulation results show that RBF neural network can successfully diagnose and classify six typical short circuit faults of induction motors. This method has a faster speed, higher accuracy and it needs fewer samples. In conclusion, RBF neural network is practical, efficient and intelligent in fault diagnosis of induction motors.


2013 ◽  
Vol 385-386 ◽  
pp. 589-592
Author(s):  
Hong Qi Wu ◽  
Xiao Bin Li

In order to improve the diagnosis rates of transformer fault, a research on application of RBF neural network is carried out. The structure and working principle of radial basis function (RBF) neural network are analyzed and a three layer RBF network is also designed for transformer fault diagnosis. It is proved by MATLAB experiment that RBF neural network is a strong classifier which is used to diagnose transformer fault effectively.


Author(s):  
Ningbo Zhao ◽  
Hongtao Zheng ◽  
Lei Yang ◽  
Zhitao Wang

The condition monitoring and fault diagnosis of rolling element bearing is a very important research content in the field of gas turbine health management. In this paper, a hybrid fault diagnosis approach combining S-transform with artificial neural network (ANN) is developed to achieve the accurate feature extraction and effective fault diagnosis of rolling element bearing health status. Considering the nonlinear and non-stationary vibration characteristics of rolling element bearing under stable loading and rotational speeds, S-transform and singular value decomposition (SVD) theory are firstly used to process the vibration signal and extract its time-frequency information features. Then, radical basis function (RBF) neural network classification model is designed to carry out the state pattern recognition and fault diagnosis. As a practical application, the experimental data of rolling element bearing including four health status are analyzed to evaluate the performance of the proposed approach. The results demonstrate that the present hybrid fault diagnosis approach is very effective to extract the fault features and diagnose the fault pattern of rolling element bearing under different rotor speed, which may be a potential technology to enhance the condition monitoring of rotating equipment. Besides, the advantages of the developed approach are also confirmed by the comparisons with the other two approaches, i.e. the Wigner-Ville (WV) distribution and RBF neural network based method as well as the S-transform and Elman neural network based one.


Sign in / Sign up

Export Citation Format

Share Document