rolling element
Recently Published Documents


TOTAL DOCUMENTS

1796
(FIVE YEARS 421)

H-INDEX

79
(FIVE YEARS 17)

2022 ◽  
Vol 166 ◽  
pp. 108466
Author(s):  
Hengcheng Zhang ◽  
Pietro Borghesani ◽  
Robert B. Randall ◽  
Zhongxiao Peng

Author(s):  
Shengye Lin ◽  
Shuyun Jiang

Abstract The support is a key factor affecting performance of face-grinding spindle. However, advantage of traditional rolling element bearing is not highlighted when it is for large-size face grinding. This technical brief aims to develop a combined support for the face-grinding spindle consisting of a water-lubricated hydrostatic thrust bearing and two types of radial rolling bearings, and the flexible rotor dynamics of the spindle with the combined support is analyzed using the modified transfer matrix method. The results show that the rotational stiffness of water-lubricated hydrostatic thrust bearing can increase the radial stiffness of the face-grinding spindle, so the small-size rolling bearings can be utilized as the radial support for the spindle by aid of such rotational stiffness. A comparative study of comprehensive performance between the spindle supported by rolling bearings and the replacement spindle designed with our proposed combined support shows that the proposed one has technical advantage of large axial load-carrying capacity, low frictional power loss, low temperature rise and etc.


2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Egor A. Efremenkov ◽  
Nikita V. Martyushev ◽  
Vadim Yu Skeeba ◽  
Maria V. Grechneva ◽  
Andrey V. Olisov ◽  
...  

Purpose: In the present work, different combinations of fits and accuracies, in relation to the profiles of mating parts, have been analysed in order to assess the degree of the engagement of transmissions that contain intermediate rolling elements. The aim of this work is to determine which fits have decreased accuracy, but nevertheless provide a minimum manufacturing clearance for the transmission engagement in order to reduce the cost of parts production. Methods and materials: Considering the normal probabilistic distribution law in relation to the obtained dimensions of the manufacturing equipment, a combination of fits were selected using the incomplete interchangeability method, taking into account the peculiarities of the cycloid engagement in transmissions with intermediate rolling elements (IRE). Results: Having studied various combinations of fits of parts that are engaged in transmissions with intermediate rolling elements and a free cage (IREFC), a combination of fits for a “ring, rolling-element cam” were determined, in which a technological clearance of 3 µm is formed in the engagement. At the same time, cycloid disk profiles are manufactured according to the 9th tolerance grade, which reduces the laboriousness and cost of the production. Discussion. When reducing the manufacturing accuracy of cycloid disks, it is possible to obtain both very ample clearances and significant negative allowances. For example, having manufactured a ring with the H9 fit, rolling elements with h6 and a cam with js9, the maximum manufacturing clearance can reach 0.086 mm, while the clearance limits vary from 0.025 mm to 0.061 mm. Additionally, if mating parts are manufactured using a combination of K9-h6-js9 fits, a negative allowance varying from 0.014 mm to 0.026 mm will emerge in the engagement. Both described cases are unacceptable because both ample clearances and large negative allowances will negatively influence the working capacity of the mechanism. However, it is possible to select a combination of fits using the 9th tolerance grade of the basic parts, by which the parts will contact in the range from a small negative allowance of 1 µm to a clearance of 3–4 µm. Furthermore, if this is considered, taking into account the machine settings, it is possible to obtain parts according to the 9th accuracy tolerance grade and, at the same time, provide a clearance in the engagement that is almost equal to zero. Moreover, such a combination of fits is relevant for any transmission with IRE. This is a positive result because it reduces the laboriousness when manufacturing parts and, at the same time, provides high accuracy of the mechanism. Conclusions: It has been established that when lowering the accuracy of manufacturing transmission parts with IRE, both clearances and negative allowances may occur in the engagement, depending on the combination of fits. At the same time, it is possible to select such a combination of fits, by which the parts manufactured according to the 9th tolerance grade, will provide almost zero clearance of the engagement of the transmission. In this way, it is possible to reduce the cost of manufacturing the parts for gears with intermediate rolling elements and, at the same time, maintain a high accuracy of the transmission mechanism.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Matti Savolainen ◽  
Arto Lehtovaara

This paper presents the trends of damage detection parameters over the lifetime of a rolling element bearing. In the experimental part, a series of bearing tests was performed using the twin-disc test device, until the monitored bearing was severely worn. This was followed by the analysis of measured acceleration and acoustic emission data in a constant-load condition, but also as loaded with impact-type loading. The results showed that traditionally used parameters, such as kurtosis and RMS, can indicate whether the bearing is damaged or not in a non-impact load condition. However, especially under impact-loading, the parameters based on acoustic emission data showed good performance and enabled monitoring of progress of the bearing damage.


2021 ◽  
pp. 107754632110507
Author(s):  
HongChao Wang ◽  
WenLiao Du ◽  
Haiyi Li ◽  
Zhiwei Li ◽  
Jiale Hu

As the most commonly used support component in engineering, rolling element bearing is also the most prone-to-failure part. The vibration signal of faulty bearing will take on repetitive impact and modulation characteristics, and the two features are often difficult to be extracted by conventional fault feature extraction methods such as envelope spectral. The main reasons are due to the influence of strong background noise, the signal attenuation of the acquisition path, and the early weak failure characteristics. To solve the above problem, a weak fault feature extraction method of rolling element bearing by combing improved minimum entropy de-convolution with enhanced envelope spectral is proposed in the paper. The enhancement effect of improved minimum entropy de-convolution on impact features and the satisfactory extraction effect of EES on repetitive impact and modulation features are utilized comprehensively by the proposed method. Firstly, improved minimum entropy de-convolution is used to filter the vibration signal of faulty bearing to enhance the impact characteristics, and the influence of signal acquisition path on the attenuation of the signal characteristics is also weakened at the same time. Then, enhanced envelope spectral is performed on the filtered signal, and the repetitive impact and modulation characteristics of vibration signal are extracted synchronously. In order to solve the shortcomings of the current commonly used de-convolution methods, an improved minimum entropy de-convolution method based on D-norm is proposed, which can solve the interference caused by random impulsive signals effectively. In addition, compared with the conventional method such as envelope spectral, the enhanced envelope spectral method could extract the repetitive impact and modulation characteristics of the faulty signal simultaneously much more effectively. Effectiveness and superiority of the proposed method are verified through simulation, experiment, and engineering application.


Author(s):  
Xudong Song ◽  
Dajie Zhu ◽  
Shaocong Sun

The rolling element bearing is an important part of mechanical equipment, it has various kinds of malfunctions, the location of the fault may occur in the inner ring, outer ring, or rolling element of the bearing. Therefore, traditional methods of classification are difficult to classify and identify effectively. To improve the accuracy of bearing fault diagnosis, the deep learning method is used to diagnose the fault of the rolling element bearing. In this paper, the long short-term memory and gated recurrent unit are combined to build a bearing fault diagnosis model. On the other hand, this paper adjusts the hidden layer structure and optimizes the network parameters to establish a better long short-term memory–gated recurrent unit–long short-term memory diagnostic model and classify the fault types of bearings with Softmax. The model proposed in this paper can effectively diagnose the bearing fault under the bearing data set of Case Western Reserve University and the University of Cincinnati. Compared with the traditional long short-term memory and the gated recurrent unit, the model proposed in this paper has high accuracy in fault diagnosis as well as certain reliability and generalization ability.


Sign in / Sign up

Export Citation Format

Share Document