rbf neural network
Recently Published Documents


TOTAL DOCUMENTS

2213
(FIVE YEARS 472)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Baoliang Ma ◽  
Yuzhu Zhang ◽  
Lixing Ma

Calcium complex ferrate is an ideal binder phase in the sintered ore phase, and a detailed study of the whole process of calcium complex ferrate generation is of great significance to improve the quality of sintered ore. In this paper, we first investigated calcium ferrate containing aluminum (CFA), which is an important precursor compound for the generation of complex calcium ferrate (SFCA), followed by a series of composite calcium ferrate generation process phase XRD detections and data preprocessing of data. Data correlation and data fitting analysis were combined with composite calcium ferrite phase diagram energy spectrum analysis to obtain the effect of MgO and Al2O3 on the formation of composite calcium ferrite. Then a modified RBF neural network model using the resource allocation network algorithm (RAN) was used to predict the generation trend of complex calcium ferrate. The parameters of the neural network are optimized with the Dragonfly algorithm, compared with the traditional RBF neural network. The prediction accuracy of the improved algorithm was found to be higher, with a prediction result of 97.6%. Finally, the predicted results were based on comparative metallurgical experimental results and data analysis. The validity and accuracy of the findings in this paper were verified.


2022 ◽  
Vol 355 ◽  
pp. 03064
Author(s):  
Jiaming Yu ◽  
Renxiang Bu ◽  
Liangqi Li

In view of the inherent non-linearity, complexity, susceptibility to external wind, wave, and current interference of under-driven ships, and the difficulty of adjusting and adjusting control parameters, to improve the performance of ship’s autopilot, a kind of RBF neural network sliding mode variable structure PID controller is designed. Traditional PID control is sensitive to parameter changes, online tuning is difficult, and easy to overshoot. In order to solve this problem, combining the variable structure characteristics of PID, a differential compensation term is added to the integral term to convert the PID control parameters into three parameters with more obvious physical meanings, and then combined with the RBF neural network learning and identification function to realize online tuning and adaptive control of ship control parameters. Using MATLAB software to simulate the container ship “MV KOTA SEGAR” MMG model shows that the designed RBF neural network sliding mode PID controller can effectively eliminate the ship’s lateral deviation caused by external interference such as wind, waves, currents, etc., with high control accuracy,robustness and strong adaptability.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Zhenzhen He ◽  
Jiong Yu ◽  
Binglei Guo

With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets.


Author(s):  
Monisha Pathak ◽  
◽  
Mrinal Buragohain ◽  

In this paper a New RBF Neural Network based Sliding Mode Adaptive Controller (NNNSMAC) for Robot Manipulator trajectory tracking in the presence of uncertainties and disturbances is introduced. The research offers a learning with minimal parameter (LMP) technique for robotic manipulator trajectory tracking. The technique decreases the online adaptive parameters number in the RBF Neural Network to only one, lowering computational costs and boosting real-time performance. The RBFNN analyses the system's hidden non-linearities, and its weight value parameters are updated online using adaptive laws to control the nonlinear system's output to track a specific trajectory. The RBF model is used to create a Lyapunov function-based adaptive control law. The effectiveness of the designed NNNSMAC is demonstrated by simulation results of trajectory tracking control of a 2 dof Robotic Manipulator. The chattering effect has been significantly reduced.


Author(s):  
Deepak Kumar Tiwari ◽  
Hari Lal Tiwari ◽  
Raman Nateriya

Abstract In this paper, Kolar River watershed, Madhya Pradesh is taken as the study area. This study area is located in Narmada River in Central India. The data set consists of monthly rainfall of three meteorological stations, Ichhawar, Brijesh Nagar, and Birpur rainfall stations from 2000 to 2018, runoff data at Birpur and temperature data of Sehore district. In this paper, radial basis function neural network models have been studied for generation of rainfall–runoff modeling along with wavelet input and without wavelet input to the RBF neural network. A total of 15 models was developed in this experiment based on various combinations of inputs and spread constant of RBF model. The evaluation criteria for the best models selected are based on R2, AARE, and MSE. The best predicting model among the networks is model 8, which has input of R(t-1), R(t-2), R(t-3), R(t-4), and Q(t-1). For RBFNN model, maximum value of R2 is 0.9567 and least value of AARE and MSE is observed. Similarly, for WRBFNN model, maximum value of R2 is 0.9889 and least value of AARE and MSE is observed. WRBF performs better than RBF with any data processing techniques which shows model proposed possess better predictive capability.


Sign in / Sign up

Export Citation Format

Share Document