Shot boundary-based keyframe extraction for video summarisation

Author(s):  
G.G. Lakshmi Priya ◽  
S. Domnic
Author(s):  
Rashmi B S ◽  
Nagendraswamy H S

The amount of video data generated and made publicly available has been tremendously increased in today's digital era. Analyzing these huge video repositories require effective and efficient content-based video analysis systems. Shot boundary detection and Keyframe extraction are the two major tasks in video analysis. In this direction, a method for detecting abrupt shot boundaries and extracting representative keyframe from each video shot is proposed. These objectives are achieved by incorporating the concepts of fuzzy sets and intuitionistic fuzzy sets. Shot boundaries are detected using coefficient of correlation on fuzzified frames. Further, probabilistic entropy measures are computed to extract the keyframe within fuzzified frames of a shot. The keyframe representative of a shot is the frame with highest entropy value. To show the efficacy of the proposed methods two benchmark datasets are used (TRECVID and Open Video Project). The proposed methods outperform when compared with some of state-of-the-art shot boundary detection and keyframe extraction methods.


2017 ◽  
Vol 9 (4) ◽  
pp. 15-29
Author(s):  
Lingchen Gu ◽  
Ju Liu ◽  
Aixi Qu

The advancement of multimedia technology has contributed to a large number of videos, so it is important to know how to retrieve information from video, especially for crime prevention and forensics. For the convenience of retrieving video data, content-based video retrieval (CBVR) has got great publicity. Aiming at improving the retrieval performance, we focus on the two key technologies: shot boundary detection and keyframe extraction. After being compared with pixel analysis and chi-square histogram, histogram-based method is chosen in this paper. Then we combine it with adaptive threshold method and use HSV color space to get the histogram. For keyframe extraction, four methods are analyzed and four evaluation criteria are summarized, both objective and subjective, so the opinion is finally given that different types of keyframe extraction methods can be used for varied types of videos. Then the retrieval can be based on keyframes, simplifying the process of video investigation, and helping criminal investigation personnel to improve work efficiency.


2020 ◽  
Vol 13 (4) ◽  
pp. 798-807
Author(s):  
J. Kavitha ◽  
P. Arockia Jansi Rani ◽  
P. Mohamed Fathimal ◽  
Asha Paul

Background:: In the internet era, there is a prime need to access and manage the huge volume of multimedia data in an effective manner. Shot is a sequence of frames captured by a single camera in an uninterrupted space and time. Shot detection is suitable for various applications such that video browsing, video indexing, content based video retrieval and video summarization. Objective:: To detect the shot transitions in the video within a short duration. It compares the visual features of frames like correlation, histogram and texture features only in the candidate region frames instead of comparing the full frames in the video file. Methods: This paper analyses candidate frames by searching the values of frame features which matches with the abrupt detector followed by the correct cut transition frame with in the datacube recursively until it detects the correct transition frame. If they are matched with the gradual detector, then it will give the gradual transition ranges, otherwise the algorithm will compare the frames within the next datacube to detect shot transition. Results:: The total average detection rates of all transitions computed in the proposed Data-cube Search Based Shot Boundary Detection technique are 92.06 for precision, 96.92 for recall and 93.94 for f1 measure and the maximum accurate detection rate. Conclusion:: Proposed method for shot transitions uses correlation value for searching procedure with less computation time than the existing methods which compares every single frame and uses multi features such as color, edge, motion and texture features in wavelet domain.


Author(s):  
Carolina Toledo Ferraz ◽  
William Barcellos ◽  
Osmando Pereira Junior ◽  
Tamiris Trevisan Negri Borges ◽  
Marcelo Garcia Manzato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document